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Self-Supervised Feature Learning With
CRF Embedding for Hyperspectral

Image Classification
Yuebin Wang , Jie Mei, Liqiang Zhang , Bing Zhang , Panpan Zhu, Yang Li, and Xingang Li

Abstract— The challenges in hyperspectral image (HSI) clas-
sification lie in the existence of noisy spectral information and
lack of contextual information among pixels. Considering the
three different levels in HSIs, i.e., subpixel, pixel, and superpixel,
offer complementary information, we develop a novel HSI feature
learning network (HSINet) to learn consistent features by self-
supervision for HSI classification. HSINet contains a three-layer
deep neural network and a multifeature convolutional neural
network. It automatically extracts the features such as spatial,
spectral, color, and boundary as well as context information.
To boost the performance of self-supervised feature learning with
the likelihood maximization, the conditional random field (CRF)
framework is embedded into HSINet. The potential terms of
unary, pairwise, and higher order in CRF are constructed by
the corresponding subpixel, pixel, and superpixel. Furthermore,
the feedback information derived from these terms are also fused
into the different-level feature learning process, which makes the
HSINet-CRF be a trainable end-to-end deep learning model with
the back-propagation algorithm. Comprehensive evaluations are
performed on three widely used HSI data sets and our method
outperforms the state-of-the-art methods.

Index Terms— Conditional random field (CRF), convolutional
neural network (CNN), feature learning, hyperspectral
image (HSI) classification, self-supervision.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are characterized in
hundreds of continuous observation bands throughout

the electromagnetic spectrum with high spectral resolution [1]
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in the field of remote sensing. These characteristics can
help us to discriminate different materials of interest [2].
HSI classification has become one of the most important tasks
like land cover/use classification. However, the noises and
mixed spectral information in HSIs cause several theoretical
and practical challenges for classification [3]. In recent years,
many methods have been proposed to classify HSIs [4]–[7].
Based on the different levels of HSI feature extraction,
these classification approaches usually can be divided into
three types of approaches, i.e., subpixel-level, pixel-level,
and superpixel-level methods [8]–[14]. Since pixels in HSIs
usually contain mixed spectral information of different objects,
subpixel-level classification methods have the ability to obtain
features of pure spectral signals from subpixels. Although the
pixel-level classification methods can combine the spectral
and spatial features to enhance classification performance,
they are susceptible to mixed pixels and noise, resulting in
noisy classification results. Moreover, the above two types of
methods fail to consider region boundary areas. For another,
the spatial continuity has not been fully utilized in these
approaches [3]. Superpixel can adaptively describe the local
structure information with different sizes and shapes, and the
object boundaries can be preserved well. Yet, the classification
accuracy is deteriorated if undersegmentation cannot be fully
avoided in superpixel-based approaches [15].

This enables us to take full advantage of the properties
of three different levels in HSIs, i.e., spectral and spatial
correlations, shape and contextual information as well as band-
to-band variability. The difficulties in accurately describing
the features of pixels from sublevel to superlevel are induced
by the noises and mixed spectral information in HSIs and
lack of contextual information among pixels, which are the
challenges in HSI classification [4], [16], [17]. Aiming to
obtain accurate classification results of HSIs, it usually needs
a great deal of labeled pixels to train the parameters of the
deep neural network. However, the amount of human resources
needed to manually annotate such data sets represents a
problem [18]. Inspired by recent works about self-supervised
learning [19], [20], [52], the information about data can be
adopted as a source of self-supervision for feature learning.
Thus, the features learned in a certain level can be exploited
for the HSI feature learning of other levels. The key benefit
of this approach is that the annotations can be obtained
for “free.”
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In this paper, HSINet is constructed to learn three comple-
mentary features of multilevels by the self-supervised way.
To boost the self-supervised feature learning performance,
the conditional random field (CRF) framework is embedded
into HSINet. Our contributions are three folds.

1) We propose a deep network HSINet that effectively
extracts and integrates complementary multilevel fea-
tures from subpixel-level, pixel-level, and superpixel-
level by self-supervision. To the best of our knowledge,
this is the first use of the deep network model to learn
and integrate the three-level complementary features for
HSI classification.

2) We propose a HSINet-CRF model to alleviate the prob-
lem of the sampling complexity and gain robustness to
noise in the input features. The feedback information
derived from the terms of CRF is fed back to HSINet
to further augment the performance of self-supervised
feature learning. Moreover, our method significantly
reduces the intensive labeling cost in previous works
by self-supervision.

3) Our method is an efficient end-to-end trained system.
It fully exploits the complementary characteristics of
the subpixel, pixel, and superpixel to produce powerful
feature representations that capture texture, shape, and
contextual information of HSIs. It outperforms the state-
of-the-art methods on three HSI data sets.

II. RELATED WORK

In this section, we will introduce the contents about
subpixel-based, pixel-based, and superpixel-based HSI clas-
sification methods.

A. Multilevel Features Fusion

Since the superpixel has the ability to provide
contextual information, the superpixel-based classification
approach can well avoid the “salt-and-pepper” problem.
Just as Eches et al. [16] stated, it is difficult to obtain an
accurate over-segmentation superpixel map for HSI classifi-
cation only by one computational process. Once pixels within
a superpixel belong to different classes, a wrong classification
cannot be avoided. Under this condition, it is better to
integrate the advantages of subpixel, pixel, and superpixel
into the feature learning procedure and classification for HSIs.
There exists some related works to fuse different levels of
HSI features. In [14] and [16], multilevels of HSI features
are learned independently, which would make the learned
features be not consistent with each other.

B. Subpixel-Based HSI Classification

In the HSIs, mixed pixels are a mixture of more than one
distinct substance. Aiming to obtain the pure spectral signals
(also called as endmembers), some subpixel-based algorithms
are developed to separate different category pixels. The sub-
pixel mapping technique introduced by Atkinson [23] can
obtain the subpixel location of each class in a pixel by dividing
a pixel into subpixels. To improve the subpixel mapping accu-
racy, an adaptive subpixel mapping framework was proposed

based on a multiagent system for remote sensing imagery [24].
In [25], a framework was developed for semisupervised
HSI classification that naturally integrates the information
provided by discriminative classification and spectral unmix-
ing, where the complementarity information of classification
and spectral unmixing can be better explored. Linear spectral
unmixing is also a popular tool in remotely sensed hyper-
spectral data interpretation. Iordache et al. [26] have studied
the linear spectral unmixing problem under the light of recent
theoretical results published in those referred to areas and
further indicates the potential of sparse regression techniques
in the task of accurately characterizing the mixed pixels using
the library spectra. With low-rank further embedding, sparse
and low-rank matrices are simultaneously learned to exploit
both spatial correlation and sparse representation of pixels
lying in the homogeneous regions of HSI [27].

C. Pixel-Based HSI Classification

Pixel-based HSI classification methods are another impor-
tant branch, which have appeared in many related works.
In HSI classification, multiple features, e.g., spectral, texture,
and shape features, can be employed to represent pixels from
different perspectives. In [4], a patch alignment framework
was introduced to linearly combine multiple features in the
optimal way and obtain a unified low-dimensional represen-
tation of these multiple features for subsequent classification.
A spectral–spatial feature learning method was proposed to
obtain robust features of HSIs in [28]. It combines the spectral
feature learning and spatial feature learning into a hierarchical
structure. Gao et al. [29] constructed a bilayer graph-based
learning framework for HSI classification, which can better
explore the information of spectral and spatial of pixels. Some
methods of HSI classification put emphasis on the classifiers.
In [30], an HSI classification algorithm based on discrim-
inative conditional random was developed. Ma et al. [31]
combined local manifold learning and the k-nearest-neighbor
classifier for HSI classification, where locally linear embed-
ding, local tangent space alignment, and Laplacian eigenmaps
are investigated with these classifiers. A semisupervised graph
based was proposed in [32]. This method can well handle the
special characteristics of the HSI, namely, high-input dimen-
sion of pixels, few labeled samples, and spatial variability of
the spectral signature.

Based on the studies of subpixel-level and pixel-level
HSI classification, it is observed that these classification
approaches can well exploit discriminant spectral and spa-
tial information of each pixel. Due to lack of contextual
information among pixels, the subpixel-level and pixel-level
classification methods are likely to generate noisy appearance
in classification maps [16], [14].

D. Superpixel-Based HSI Classification

For better exploiting the contextual information among
pixels, superpixel-based classification is adopted to establish
the neighboring relationships among the pixels. Superpixels
are generated with the graph-based algorithms like normal-
ized cuts [33] and entropy rate superpixel segmentation [34]
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or the gradient-descent-based algorithms like SLIC [35] and
SEEDS [36]. Superpixels can be used to smooth the features,
labels and the similarities among neighboring pixels and avoid
the “salt-and-pepper” problem generated in the subpixel-based
and pixel-based classification methods. In [8], superpixels
instead of pixels are applied to the graphical model to capture
the contextual information and the spatial dependence among
the superpixels. Fang et al. [9] considered a superpixel in
an HSI as a small spatial region whose size and shape
can be adaptively adjusted for different spatial structures.
In their approach, pixels within each superpixel were jointly
represented by a set of common atoms from a dictionary
via a joint sparse regularization. A superpixel-level sparse
representation classification framework with multitask learning
was developed in [10]. The proposed algorithm exploited the
class-level sparsity prior and the correlation of neighboring
pixels for fusing multiple features. Based on the superpixels,
a spectral–spatial adaptive sparse representation method was
proposed for HSI compression by taking advantage of the
spectral and spatial information of HSIs [37]. Sparse repre-
sentation can transform spectral signatures of the pixels into
sparse coefficients with very few nonzero entries.

E. Semantic Segmentation

HSI classification also can be considered as the semantic
segmentation of HSIs. Segmentation is essential for image
analysis tasks. Semantic segmentation describes the process
of associating each pixel of an image with a class label. The
watershed segmentation algorithm was extended for HSIs [54].
The accuracy of the watershed algorithms was demonstrated
by the further incorporation of the segmentation maps into a
classifier. Long et al. [41] showed that convolutional networks
by themselves, trained end-to-end, pixels-to-pixels, exceed
most approaches in semantic segmentation. One can also apply
high-capacity convolutional neural networks to bottom-up
region proposals in order to localize and segment objects [53].
The framework of CNN for semantic segmentation also can
be adopted for HSI semantic segmentation.

III. PROPOSED APPROACH

In this paper, we develop a novel HSI feature learning
network (HSINet) to learn heterogeneous features by self-
supervision (Fig. 1). HSINet contains a three-layer deep
neural network (TDNN) and a multifeature convolutional
neural network (MCNN). The TDNN learns subpixel-level
features where noise is effectively removed from the original
spectral information. The MCNN is utilized to obtain pixel-
level features. Based on the features of subpixel level and
pixel level, the HSI is over segmented into two kinds of
superpixels. The extracted feature of each superpixel can
be utilized to obtain the spatial constraints and contextual
information among pixels. Then the self-supervised constraints
are employed to make different-level features consistent.

Each level feature in HSINet can be considered as the
supervisor for the feature learning of other levels. How-
ever, quality of the pure spectral and accurate relation-
ships between pixels cannot be well ensured without the

Fig. 1. Overview of HSINet. The red lines show the self-supervised
constraints between different-level features. The three loss constraints are
proposed to learn consistent features from three levels.

likelihood maximization. The CRF provides a solution to
boost the performance of self-supervised feature learning.
It is a flexible framework which can incorporate different
kinds of features for visual recognition [21], [22]. Thus a
novel approach named HSINet-CRF is developed to embed
CRF framework into HSINet for further enhancing the per-
formance of HSI feature learning. The potential terms of
unary, pairwise, and higher order in CRF are constructed by
the corresponding subpixel, pixel, and superpixel. Further-
more, the feedback information derived from these terms is
also embedded into different-level feature learning process
(Fig. 2). Our method alleviates the need of engineered features,
and produces a powerful representation that captures texture,
shape, and contextual information.

A. HSINet

To extract the complementary features from subpixel, pixel,
and superpixel, we propose a TDNN and an MCNN, which
utilize spatial–spectral information of neighboring pixels to
explore contextual interactions of pixels simultaneously.

1) Subpixel-Level Feature Learning: The spectral
information of pixels in an HSI is described by the
vectors X = [x1, x2, . . . , xN ], where N represents the number
of image pixels, x ∈ R

d and d denotes the dimension of the
spectral vector (number of bands). Let yi be the label variable
assigned to the pixel i . The value of yi is from a predefined
set of labels L = {l1, l2, . . . , lL}. Y is a vector formed by a
set of variables {y1, y2, . . . , yN}.

Since the HSIs usually contain mixed spectral information
of different objects, it is necessary to remove the noise and
get pure spectral signals of different land cover/use. It needs to
reduce the dimension of the original spectral vector, and give
the new representations for the HSI. Following the work [14],
the dimension is set to 2×L, where L is the number of classes
in the HSI. We utilize the TDNN to extract the subpixel-level
feature. The input of TDNN is the original spectral vector.
The output of TDNN is the spectral vector with the dimension
of 2×L. For obtaining the new representations, the parameters
of feature transformation are defined in each layer of TDNN.
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Fig. 2. Pipeline of the HSINet-CRF for HSI classification. HSINet including TDNN and MCNN learns three complementary features of multilevels by
self-supervision. To boost the self-supervised feature learning performance, the CRF is embedded into HSINet.

By means of feature transformation with TDNN, the features
of subpixel level can be achieved.

TDNN is a class of feed forward artificial neural network.
Furthermore, TDNN includes three fully connected layers: an
input and an output layer with one hidden layer. The first two
layers have 600 neurons and the third layer has 2× L neurons.
Fully connected layers connect every neuron in one layer to
every neuron in another layer. All nodes are interconnected.
Each node in one layer connects with a certain weight and a
bias to every node in the following layer. The output hm at the
mth layer (1 ≤ m ≤ 3) is computed by the following nonlinear
activation function, which is implemented by rectified linear
unite (ReLU) to accelerate the training process

hm = ϕ(Wmhm−1 + bm) (1)

where Wm is the weight matrix and bm is the bias vector in
this layer, ϕ(·) is the nonlinear activation function.

2) Pixel-Level Feature Learning: As shown in Fig. 2,
the whole MCNN framework includes seven convolutional-
based layers. The first layer is a “multiscale filter bank,”
which convolves the three input images with different sizes
using 256 kernels of three different size convolutional filters.
The second to the seventh layers are blocks containing con-
volution, max-pooling, feature transformation, and deconvolu-
tion. The convolution of the second layer filters the output of
first layer with 256 kernels of size 5×5×768. The third layer
has 256 kernels of size 4×4×256 connected to the 5×5×256
outputs of the second layer. The fourth, fifth, sixth, and seventh
layers have 256 kernels of size 3 × 3 × 256. Then the output
of the seventh layer is the input of two fully connected layers
to learn pixel-level features. We use the dropout in the fully-
connected layers to avoid overfitting. The output of the last
fully connected layer is fed to a softmax layer, which is defined
as the gradient-log-normalizer of the categorical probability
distribution to produce a distribution over L class labels.

The nonlinear activation function ReLU is applied to the
output of every convolutional and fully connected layer.

Since the available HSI training data is highly limited,
we use two modules of residual learning [38] to avoid overfit-
ting under the network having enough layers. This strategy is
shown to be able to significantly improve training efficiency
of the networks and is easier to optimize the weights with the
residual mapping than with the unreferenced mapping. The
following network settings play important role in the structure
of MCNN:

a) Multiscale filter bank: The first layer of the MCNN is
a multiscale filter bank, which can explore spectral correlations
and local spatial structure. The multiscale filter bank consists
of three different size convolutional filters 1×1×d , 3×3×d
and 5×5×d . The filters 1×1×d are utilized to handle spectral
correlations, while the filters 3×3×d and 5×5×d are used to
exploit the local spatial correlations among neighboring pixels.
The sizes of the input images corresponding to three different
size convolutional filters are 1×1×d , 3×3×d and 5×5×d ,
and the sizes of the feature maps from the three convolutional
filters are 1 ×1, 3 ×3 and 5 ×5. To combine the three feature
maps into a joint feature map, a space of two-pixel width filled
with zeros is padded around the feature maps so that the size
of three feature maps become 5×5. Then we can combine the
three convolutional feature maps from the first layer to form
a joint spatial–spectral feature map used as the input of the
subsequent layers. It is noted that the residual learning and the
multiscale filter bank are effective for increasing the width and
depth of the network [38], [39], which can help to effectively
learn the network with a small number of training data.

b) Block in the network: We exploit the advantage of
the blocks from the second to the seventh layers to process the
influence of pixel clustering results for feature learning. The
blocks are constructed based on the superpixels that provide
the information of clustering results, which is useful for feature
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learning of self-supervision. As shown in Fig. 2, each block
contains convolution, max-pooling, feature transformation,
and deconvolution. The convolution of each block takes the
5 × 5 output of the previous layer as the input. We obtain the
1×1 feature map after convolution and max-pooling, which is
taken as a 2-D feature matrix of the feature transform with the
information of clustering results. Then the feature map after
transformation is deconvoluted to 5 × 5 for fully exploiting
spatial information of pixels.

Feature Transformation: Before feature transformation,
HSI is divided into a set of nonoverlapping homogenous
regions via spectral clustering (SC) method [40], and each
region corresponds to a superpixel. Since the pixels in each
superpixel have spectral and spatial similarity, we calculate
the average spectral data to characterize the common spatial–
spectral information. Then the transformation matrix H is
obtained using the average spectral data of each superpixel

Hi,i = exp
�−�ua − us�2

2/σb
�

�K
t=1exp

(−�ua − ut�2
2/σb

) (2)

where us is the average spectral value of the superpixel
containing pixel i , ua is the average spectral value of all super-
pixels, ut is the average spectral value of each superpixel, σb is
an alternative parameter, and K is the number of superpixels.
The following equation is then defined to transform the feature
map after convolution and max-pooling in each block:

z = H{Wc ∗ x + bc} (3)

where x and z represent the input and output vectors
of the used layers, Wc and bc are the weight and bias,
{·} denotes the output after convolution and max-pooling,
H is the transformation matrix obtained using superpixel
information, and ∗ denotes a convolution.

Note that each superpixel in HSI corresponds to a set of
spatially connected and spectrally similar pixels that can better
exploiting the spectral–spatial structure information, so the
feature transformation in each block can effectively improve
the performance of HSI classification. Since the feature maps
learned by MCNN are changeable during the iteration, it is not
appropriate to use the average spectral value of superpixels
segmented from the original whole image throughout the
iteration process in the feature transformation. We develop
the adaptive superpixels for the block, which segment the
superpixels using the pixel-level feature learned from previous
iteration. Then the transformation matrix is changing during
iterations so that the feature learning process can make better
use of clustering information.

Deconvolution: We adopt the deconvolution to make feature
map size after transformation upsample to 5×5, which is taken
as the input to the subsequent convolutional layers. However,
unlike the fully convolutional network [41], which uses the
deconvolution to recover the pixel level prediction information
from the feature maps extracted by the convolutional layers.
We add the deconvolution filter into every block to fully
exploit the spatial correlation. In our experiments, we find
the upsampling in each block is effective for learning spatial
information of pixels.

3) Superpixel-Level Feature Learning: After getting the
subpixel-level feature by TDNN and the pixel-level feature
by MCNN, we can learn superpixel-level feature. We obtain
two kinds of superpixels based on the subpixel-level feature
and pixel-level feature using the SC method, and thus two
kinds of superpixel-level features can be obtained by calculat-
ing the average spectral data of pixels in each superpixel.

4) Self-Supervised Feature Learning Constraints: Trough
the multilevel feature learning, we obtain different feature
representations of the HSI. Aiming to increase the accuracy
of feature learning without label introduced, we define three
constraints to learn heterogeneous features from three levels by
self-supervision and make different-level features of the HSI
be consistent. Fixed one level feature, the feature of this level
can be considered as the supervisor for the feature learning of
other levels. The constraints of self-supervised feature learning
include three parts: subpixel-pixel constraint, pixel-superpixel
constraint, and superpixel-superpixel constraint. To fulfil the
feature learning through the subpixel-pixel constraint, the man-
ifold learning is introduced with the assumption: if two pixels i
and j have the similar subpixel-level feature, they are expected
to have same labels. To deal with the feature learning under
the constraints of subpixel-pixel and superpixel–superpixel, the
L-2 norm function is adopted to compute the corresponding
learned features of different level.

a) Subpixel-pixel constraint: If two pixels i and j have
the similar subpixel-level feature, they are expected to have
same labels. We utilize this property to regularize the pixel-
level feature of each pixel by the similar relationship in sub-
pixel level. An adaptive graph GE is introduced to describe the
relationships among the pixels. In GE , each vertex corresponds
to one pixel, and the nearest neighbors are selected according
to the weight matrix U. U is defined using the following
function:
Ui j =

�
exp

�−��fsub
i − fsub

j

��2
2

�
i ∈ N k1( j) or j ∈ Nk1(i)

0 otherwise

(4)

where Nk1(i) denotes the k1-nearest neighbors of pixel i .
fsub
i is the subpixel-level feature vector for pixel i . The

subpixel-pixel constraint is obtained as follows using the
manifold smoothness with pixel-level feature:

J1 = 1

2

n�
i, j=1

Ui j
��fpix

i − fpix
j

��2
2 = tr((fpix)T LE fpix) (5)

where fpix
i is the pixel-level feature vector for pixel i ,

fpix is the pixel-level feature matrix, DE is a diagonal matrix
where the (i, i)th element equals to the sum of the i th row
of U, then LE = DE − U. This regularization is used to
simultaneously optimize the relationships among pixels and
classification scores.

b) Pixel-superpixel constraint: Pixels in one superpixel
are expected to have similar data representation and labeling
information. We define the following constraint to avoid the
“salt-and-pepper” problem and further refine the HSI classifi-
cation results with pixel-level feature:

J2 = ��fpix
i − upix

s

��2
2 (6)
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where upix
s is the average feature of the superpixel containing

pixel i , which is calculated by pixel-level feature.
c) Superpixel-superpixel constraint: We can obtain two

kinds of superpixels using subpixel-level and pixel-level fea-
tures. However, the two kinds of superpixels are usually
inconsistent, which can lead incorrect classification results.
To solve this problem, we utilize the superpixel-superpixel
constraint to make subpixel-level and pixle-level features have
consistent over-segmentation results, further for consistent fea-
ture learning of different levels. Thus, the following objective
function is defined to obtain consistent classification results:

J3 =
n�

i=1

��usub
t − upix

t

��2
2 (7)

where usub
t and upix

t are the superpixel-level features obtained
by subpixel-level feature and pixel-level feature, respectively.
J3 is calculated by two kinds of superpixels to show their
difference.

B. HSINet-CRF Model

Aiming to boost the self-supervised feature learning by the
probabilistic model, we propose an HSINet-CRF model to
embed the CRF framework into HSINet.

Subpixels are usually utilized to describe information about
pure spectral signals like land cover/use. We define the unary
term of the CRF through the subpixel-level feature. The
relationships between a pixel and neighboring pixels can be
determined by the spectral-spatial graph. The pairwise term
of the CRF can fully exploit the advantage of the pixel-
level feature. The higher order term of CRF describes the
pixel clustering information, so the superpixel-level feature
is introduced to define the higher order term. The detail of
CRF terms is referred as the following.

Given a graph G = (V ,E), where V = {y1, y2, . . . , yN }.
A CRF (X, Y) can be characterized by a Gibbs distribution
of the form P(Y|X) = (1/Z (X)) exp(−E(y|X)), where
E(y|X) is the Gibbs energy of a labeling y ∈ LN and Z(X)
is the partition function [42]. For notational convenience, we
omit the conditioning on X in the rest of this paper.

In the fully connected pairwise CRF model [43], the unary
potential of CRF is given by

E1(y) =
�

i

ψu(yi ) (8)

where i ∈ [1, N], the unary potential ψu(yi ) measures the
cost of assigning label yi to the pixel i , which is computed
independently for each pixel from the softmax function using
the subpixel-level feature in our CRF model. The pairwise
potentials are modeled as follows:

E2(y)=
�
i< j

ψp(yi , y j )=
�
i< j

μ(yi , y j )

P�
n=1

w(n)k(n)G

�
fpix
i , fpix

j

�
(9)

where j ∈ [1, N], μ(·) is a label compatibility function,
w(n) are linear combination weights, each k(n)G is a Gaussian
kernel. The pixel-level feature vectors fpix

i and fpix
j for

pixels i and j are obtained from MCNN. ψp(yi , y j ) measures
the cost of the pixels i , j taking labels yi , y j simultaneously,
which are obtained from the pixel-level feature in MCNN and
predict pixel labels considering consistency and smoothness
of the labels assignment.

Considering that pixels in a superpixel are likely to belong
to the same class, we develop superpixel-based higher order
potentials defined as follows:
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n�
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i ksub�fsub

i

�+
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i kpix�fpix
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t

��2
2

σ sub
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+
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pix
i exp

���fpix
i − upix

t

��2
2

σ
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s
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where wsub
i and wpix

i are learnable weights. fsub
i and fpix

i are
the subpixel-level and pixel-level feature vectors learned by
the TDNN and MCNN, respectively. usub

t and upix
t are the

average feature of pixels within the superpixels where fsub
i

and fpix
i locate, σ sub

s and σ pix
s are alternative parameters. It is

noted that superpixel-based potential is effective for avoiding
the “salt-and-pepper,” which is inconsistent with the correct
labels of its neighbors.

Since the three potentials are defined, the whole energy
function is formed as

E(y) = E1(y)+ E2(y)+ E3(y). (11)

The most probable label y for each pixel in the HSI
can be obtained by minimizing the energy E(y). Since
L-BFGS [43] requires computing the gradient of the partition
function Z, which is intractable to estimate exactly. Then an
approximate inference such as mean field approximation is
helpful.

In the traditional CRF model, the unary, pairwise and higher
order potentials are usually independent with each other, which
is not appropriate for gaining robustness to noise in the HSI.
Therefore, we embed the CRF framework into HSINet to
form HSINet-CRF, which can boost the self-supervised feature
learning by probabilistic model. Simultaneously, the three
constraints in HSINet can make the three potentials in CRF
collaborate with each other, and then the finally objective
function of the whole network HSINet-CRF is formed as

J = 1

Z
exp(−E(y))+ λ1 J1 + λ2 J2 + λ3 J3 (12)

where Z is the partition function, λ1, λ2, and λ3 are tradeoff
factors.

C. Implementation

Given such a nonlinear optimization in (12), solving the
variables in HSINet and CRF simultaneously is intractable
by directly applying gradient descent method due to the
highly nonlinear nature of J , which makes the gradient and
the Hessian difficult to compute. In this paper, we adopt a
customized iterative procedure to optimize the variables in
the HSINet-CRF. The optimization procedure mainly refers to
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two parts: the loss from three terms of CRF, and the loss from
feature learning.

For the loss from the three terms of CRF, the mean field
approximation inference is adopted to approximate the exact
distribution P(Y) by a simpler distribution Q(Y), which can be
expressed as the product of independent marginal distributions,
Q(Y) = �i Qi (yi ). For unary and pairwise potentials, the
following iterative update equation is derived from [43]:

Qi (yi = l) = 1

Zi
exp

�
− ψu(yi )−

�
l�∈L

μ(l, l �)

×
P�

n=1

w(n)
�
j �=i

k(n)G (fi , f j )Q j (l
�)

⎫⎬
⎭.
(13)

For the superpixel-based higher order potentials, the update
equation is defined as follows:

Qi (yi = l) = 1

Zi
exp

�
−
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This operation is differentiable with respect to weights wsub
i

and wpix
i , we can optimize them using back propagation. It is

also differentiable with respect to the Q(Y), allowing us to
optimize previous layers in the network.

For the loss from feature learning, it can be treated as
the general error of the objective function which is fed back
to the deep network using the chain rule [55], [56]. Since
the parameters of unary, pairwise, and higher order potentials
in CRF are differentiable with respect to Qi (yi ) distribution
inputs at each iteration, it makes the CRF another layer of
a neural network. Therefore, HSINet-CRF fully integrates
the HSINet and CRF, making it possible to train the whole
deep network end-to-end with the usual back-propagation
algorithm. Then the two components HSINet and CRF can
learn how to cooperate with each other to obtain the optimal
results during the training of the HSINet-CRF.

The architecture of the HSINet is implemented using
TensorFlow deep learning library. In the deconvolution
process, the bilinear interpolation is designed to upsample the
feature maps. During training, five iterations of mean field
inference are performed to avoid gradient vanishing, and the
parameters of the whole network are optimized end-to-end
utilizing the back-propagation algorithm. For the tradeoff
factors in HSINet-CRF, we set λ1 = 0.01, λ2 = 0.01, and
λ3 = 0.001 in the experiment. A certain number of pixels from
the HSI are random sampled for training and the remaining
data is used to evaluate the performance of the proposed
network. For each pixel, we crop the 1×1 and its surrounding
3×3, 5×5 neighboring pixels for learning convolutional layers.
We augment the number of training samples four times by
mirroring the training samples across the horizontal, vertical
and diagonal axes.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
method for HSIs classification. We first briefly describe the
used HSI data sets. Afterward, we evaluate the self-supervised
classification results of HSINet. Then the performance of the
proposed method HSINet-CRF is validated for HSI classifi-
cation, and meanwhile we validate the effectiveness of the
submodules in HSINet-CRF.

A. Experimental Data Sets

Three HSI data sets are used to evaluate the performance
of the proposed method.

The first data set is the Indian Pines data set, which was
gathered by AVIRIS sensor over the Indian Pines test site of
North-Western Indiana in 1992. It consists of 145 × 145 pixels
and 224 spectral reflectance bands in the wavelength range
0.4–2.5 μm with a spatial resolution of 20 m. The bands
covering the region of water absorption (104–108, 150–163,
and 220) are removed and hence 200 out of the 224 bands are
preserved. The data set contains 10 classes and 9620 labeled
pixels. The detailed information is listed in Table I.

The second data set is the Salinas data set, which was
collected by the 224-band AVIRIS sensor over Salinas Valley,
CA, USA. The image size is 512 × 217 pixels and is character-
ized by high spatial resolution (3.7 m pixels). As with Indian
Pines data set, 20 water absorption bands (108–112, 154–167,
and 224) out of 224 bands are discarded, thus 204 bands
are used in our experiment. The Salinas data set contains
16 classes and 54 129 labeled pixels as shown in Table I.

The third data set is the University of Pavia data set
(PaviaU), which was acquired by the ROSIS-03 sensor over an
urban area, northern Italy. The spatial size is 610 × 340 and
the spatial resolution is 1.3 m. 12 noisy bands are removed
and 103 out of the 115 bands are used in our experiment.
There are nine classes in PaviaU and 42 776 labeled pixels.
The details are shown in Table I.

Three metrics of overall accuracy (OA), average
accuracy (AA), and Kappa coefficient are used to evaluate
the classification results.

B. Self-Supervised Classification Evaluation

In order to demonstrate the quality of the three level
features learned by our HSINet in a self-supervision format,
we compare the self-supervised classification results between
HSINet and the following state-of-the-art methods: KNN,
LLE [44], NNLRS [45], LRR [46], LapLRR [47], and
SSAE [48]. For HSI classification, we use the local and
global consistency (LGC) [49] to compare the effectiveness of
different methods. In LGC, the labeled data and unlabeled data
need to be specified for HSI classification. Thus, we randomly
select 15 samples of the training data as the labeled data for
the Indian Pines data set and select 20 samples of the training
data as the labeled data for the Salinas and University of Pavia
data sets, the remaining data are unlabeled data.

The classification results are listed in Tables II–IV, in com-
parison with the other methods, the HSINet achieves the best
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TABLE I

LAND COVER CLASSES WITH SAMPLES NUMBER FOR THE INDIAN PINES, SALINAS, AND PAVIA UNIVERSITY DATA SETS

TABLE II

HSI CLASSIFICATION RESULTS (%) BY SELECTING 15 LABELED SAMPLES FOR EACH CLASS ON THE INDIAN PINES DATA SET

classification accuracies. It indicates that the HSINet can learn
heterogeneous features from three levels by self-supervision
and make HSI different-level features be consistent.

C. Classification Results of HSINet-CRF

To validate the performance of the HSINet-CRF with a
relative small number of training samples, we randomly
select 200 samples from each class as the training samples.

Since pixel number of some classes in the Indian data set is
insufficient, we select 10 classes in the Indian to train and test.
The rests are used for testing the proposed network. We report
the HSI classification performance of different methods over
20 random splits on the testing data set (see Tables V–VII).

The following four approaches are utilized to com-
pare with the HSINet-CRF in terms of HSI classification
accuracy.
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TABLE III

HSI CLASSIFICATION RESULTS (%) BY SELECTING 20 LABELED SAMPLES FOR EACH CLASS ON THE SALINAS DATA SET

TABLE IV

HSI CLASSIFICATION RESULTS (%) BY SELECTING 20 LABELED SAMPLES FOR EACH CLASS ON THE PAVIA UNIVERSITY DATA SET

1) A multilayer fully connected neural network (MDNN)
is compared to demonstrate the performance difference
between DNN and our proposed network.

2) A shallower CNN consists of two convolutional layers
and two fully connected layers (SCNN) [50] is used
to compare the performance between CNN and our
proposed network.

3) A recent contextual deep CNN (CDCNN) with nine
convolutional layers [7] and a deep belief network
(D-DBN) [51] are utilized to compare with our network.

From the classification results listed in Tables V–VII and
classification maps shown in Figs. 3–5, we have the following
observations.

1) The classification accuracies obtained by the HSINet-
CRF are higher than those obtained by other methods on

the three HSI data sets. It indicates that the HSINet-CRF
can effectively exploit the spatio–spectral information of
the HSI.

2) As shown in Figs. 3–5, the HSINet-CRF has more com-
pact HSI classification maps on the three HSI data sets,
which validates the superpixel-level feature can provide
useful spatial information for the HSI classification.

D. Discussion

We go deeper into the efficacy of HSINet-CRF by five
experiments: end-to-end trained system, collaboration among
CRF terms, block, superpixel, and multiscale filter bank.

1) Effectiveness of the End-to-End Trained System: To
validate the effectiveness of the end-to-end trained system,
we compare the HSINet-CRF with NN-CRF, where the
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TABLE V

HSI CLASSIFICATION RESULTS (%) BY SELECTING 200 SAMPLES FOR EACH CLASS ON THE INDIAN PINES DATA SET

TABLE VI

HSI CLASSIFICATION RESULTS (%) BY SELECTING 200 SAMPLES FOR EACH CLASS ON THE SALINAS DATA SET

TDNN and MCNN are trained first, and then the CRF is
applied on top of the neural networks output. As shown
in Tables V–VII and Figs. 3–5, the end-to-end HSINet-CRF
significantly outperforms the offline application of CRF as
a postprocessing method. This observation supports the fact
that the two components HSINet and CRF can learn how to

cooperate with each other to obtain the optimal results during
the training of the HSINet-CRF.

2) Effectiveness of Collaboration Among CRF Terms: To
verify the effectiveness of the collaboration among CRF terms,
we compare the HSINet-CRF with HSINet-CRF-in, which
means the CRF terms are independent and do not incorporate
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TABLE VII

HSI CLASSIFICATION RESULTS (%) BY SELECTING 200 SAMPLES FOR EACH CLASS ON THE PAVIA UNIVERSITY DATA SET

Fig. 3. Classification maps of the Indian Pine data set. (a) False-color image. (b) Ground truth. (c)–(k) Classification map obtained by MDNN, SCNN,
D-DBN, CDCNN, HSINet-conv, NN-CRF, HSINet-CRF-in, HSINet-SP, and HSINet-CRF.

the loss of feature learning. From the results listed
in Tables V–VII and Figs. 3–5, we observe that there is an
obvious advantage of the HSINet-CRF with the subpixel-pixel
loss, pixel-superpixel loss, and superpixel-superpixel loss over
the network without these regularizations. In terms of the most
classes of the three data sets, HSINet-CRF obtains higher
classification accuracy than HSINet-CRF-in, such as Corn-
mintill, Soybean-notill and Soybean-mintill in the Indian Pines
data set. It attributes to the fact that the three loss terms help
make the three CRF terms collaborate with each other.

3) Effectiveness of the Block: To verify the effectiveness
of the block, we also compare the HSINet-CRF with the
network in which each convolutional layer is regular. The
classification results are lisited in Tables V–VII and Figs. 3–5,

HSINet-conv means the second to the seventh layers only have
convolutions. Since our method integrates the information of
the pixel clustering results into feature learning, performance
of the HSINet-CRF significantly outperforms the network
with each convolutional layer being regular. The classification
results in almost classes of the three data sets acquired by
HSINet-CRF are better, and there are less “salt-and-pepper”
in the classification maps obtained by HSINet-CRF than
HSINet-conv.

4) Effectiveness of the Superpixel: To verify the effective-
ness of the superpixel, we compare the HSINet-CRF with
the HSINet-SP, which only learns subpixel-level feature and
pixel-level feature, and does not consider the superpixel-
level feature. As shown in Tables V–VII and Figs. 3–5,
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Fig. 4. Classification maps of the Salinas data set. (a) False-color image. (b) Ground truth. (c)–(k) Classification map obtained by MDNN, SCNN, D-DBN,
CDCNN, HSINet-conv, NN-CRF, HSINet-CRF-in, HSINet-SP, and HSINet-CRF.

TABLE VIII

PERFORMANCE COMPARISON OF THE MULTISCALE FILTER BANKS WITH

DIFFERENT CONFIGURATIONS OF THE PROPOSED NETWORK. ∼7 × 7
MEANS THE MULTISCALE FILTER BANK CONSISTING OF 1 × 1,

3 × 3, 5 × 5 AND 7 × 7 CONVOLUTIONAL FILTERS

the performance of the HSINet-CRF significantly outperforms
the network without considering the superpixel-level feature.
The classification results support the fact that the superpixel
can provide more contextual information than the subpixel
and pixel, and can well avoid the “salt-and-pepper” problem
generated in the subpixel-based or pixel-based classification.

As shown in Figs. 3–5, HSINet-CRF obviously performs better
than HSINet-SP on preserving the boundary. The boundaries
of the classification results obtained by HSINet-CRF are more
smooth.

5) Effectiveness of the Multiscale Filter Bank: To vali-
date the effectiveness of the multiscale filter bank used to
jointly exploit spatial–spectral information, we compare the
multiscale filter bank with different configurations consisting
of: 1 × 1, ∼3 × 3, ∼5 × 5, and ∼7 × 7. The ∼7 × 7
means the multiscale filter bank consisting of 1 × 1, 3 × 3,
5 × 5, and 7 × 7 convolutional filters, others are similar.
As shown in Table VIII, our multiscale filter bank significantly
outperforms the network with only 1 × 1 convolutional filter
on the three data sets. The reason is that the network with only
1 × 1 convolutional filter fails to use the data augmentation
due to the nonexistence of spatial filtering and cannot exploit
the spatial–spectral information. We also compare the HSINet-
CRF with the multiscale filter bank configuration ∼7 × 7.
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Fig. 5. Classification maps of the Pavia University data set. (a) False-color image. (b) Ground truth. (c)–(k) Classification map obtained by MDNN, SCNN,
D-DBN, CDCNN, HSINet-conv, NN-CRF, HSINet-CRF-in, HSINet-SP, and HSINet-CRF.

Since the ∼7 × 7 contains more noise, the selected ∼5 × 5
obtains much higher classification accuracies.

V. CONCLUSION

In this paper, we have developed the HSINet-CRF to learn
complementary and consistent features for HSI classification.
HSINet is first proposed to learn three complementary features
of different levels by self-supervision, which contains TDNN
and MCNN. To boost the self-supervised feature learning by
probabilistic model, the CRF framework is embedded into
HSINet. In the experiment, we evaluate the performance of
the proposed method for HSIs classification, and also validate
the effectiveness of the submodules in HSINet-CRF. The
experiment results prove that our method performs better
than other related approaches. The future work will involve
exploiting this framework on other labeling and regression
tasks such as 3-D point clouds parsing, and image denoising.
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