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Joint Margin, Cograph, and Label Constraints for
Semisupervised Scene Parsing From Point Clouds

Jie Mei, Liqiang Zhang , Yuebin Wang, Zidong Zhu, and Huiqian Ding

Abstract— To parse large-scale urban scenes using the super-
vised methods, a large amount of training data that can
account for the vast visual and structural variance of urban
environment is necessary. Unfortunately, such training data
are mostly obtained by tedious and time-consuming manual
work. To overcome the drawback, we propose a semisupervised
learning framework that combines the margin, cograph, and label
constraints into an objective function for point cloud parsing.
Mathematically, the margin constraint is presented to learn a
novel distance criterion that can effectively recognize points of
different classes. The graph regularization is then employed to
characterize the intrinsic geometry structure of the data manifold
and explore relationships among points. The label consistency
regularization is introduced to ensure the category consistency of
the clustered points and single point. To classify the out-of-sample
data, the framework successfully transforms the semisupervised
classification results into the linear classifier by adopting a linear
regression. An iterative algorithm is utilized to efficiently and
effectively optimize the objective function with characteristics of
multiple variables and highly nonlinear. The point clouds of four
urban scenes are used to validate our method. The experimental
results show that our method outperforms the state-of-the-art
algorithms.

Index Terms— Classification, feature, label consistency,
manifold regularization, margin constraint, point cloud.

I. INTRODUCTION

POINT cloud understanding plays a critical role in image
processing and analysis [1]–[5]. The full-scene labeling

is an important prerequisite for scene understanding and
interpretation semantics of the point clouds. The scene parsing
means that every point in the point cloud is labeled with
the category of the object which it belongs to [6]. It is a
challenge for accurately parsing a scene from the unorganized
and unoriented 3-D point cloud corrupted with noise, outliers,
nonuniformities, and partial data missing.

The current supervised approaches like [7]–[12] have
obtained high-quality classification or segmentation results
from point clouds. However, they usually need a large amount
of training data to learn the features and classifiers, reducing
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the computational efficiency. Moreover, such training data
are mostly obtained by tedious and time-consuming manual
labeling, which inevitably become an obstacle to expanding
these traditional parsing methods to the large scale [13].

In this paper, we propose a semisupervised learning method
that integrates the margin constraint, cograph regularization,
and label regularization for point cloud classification. Fig. 1
illustrates the proposed approach. First, the features of each
point are generated. Then, the margin constraint is proposed
to learn a novel distance criterion, which can maximize the
boundaries among different objects. The cograph regulariza-
tion is employed to discover the intrinsic geometry structure
of the data manifold and explore relationships among points.
The label consistency regularization is introduced to ensure
the category consistency of the clustered points as well as
the global and local consistencies of single points. In order
to classify the out-of-sample data, our method adopts a linear
regression to project the semisupervised classification results
into the linear classifier. We present an iterative algorithm to
optimize the variables of the objective function. Our method
has been evaluated on the point clouds of three scenes with
different complexities. The experimental results show that our
method is superior to other state-of-the-art algorithms.

We explicitly state our original contributions as follows.
1) A semisupervised learning method that integrates the

advantages of the margin constraint, cograph regulariza-
tion, and label regularization is proposed to parse point
cloud. The method considers the intraclass compactness
and interclass separability of labeled points, as well as
the label consistency on grouped points and single point
of unlabeled data. The experimental results show that
our method outperforms the state-of-the-art algorithms.

2) The constraints for the margins of different class points,
features, spatial, and label consistency are combined
into an objective function, which can effectively distin-
guish the same class points from the point clouds with
noise and data missing. To solve the objective function,
an effective and efficient optimization algorithm is devel-
oped. The convergence is fast.

3) The cograph is constructed by integrating the manifolds
of the point features and spatial distributions to ensure
the local consistency of neighboring points.

II. RELATED WORK

In this section, we mainly discuss the feature representation
of point clouds and the classification approaches including
supervised and semisupervised methods.
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Fig. 1. Overview of the proposed approach. (a) Point clouds. (b) Feature extraction procedure for point clouds. (c) High-level feature learning. (d) Classification
results. I, II, III, and IV correspond to the margin constraints, cograph regularization, label consistency constraint, and linear regression, respectively.

A. Feature Representation

Feature representation is very critical for achieving good
scene parsing results [14], [15]. Lin et al. [16] used a weighted
covariance matrix with a geometric median to extract local
geometric features of point cloud. Each point is assigned
with a weight to estimate the geometric median and repre-
sent its spatial contribution in the weighted principal compo-
nent analysis. The eigenvector-based feature [17], [18] and
the features derived from spin image (SI) [19]–[22] have
been widely used in point cloud classification. For example,
Martinovic et al. [23] introduced a set of feature descriptors
for each 3-D point. The point-based feature descriptors are
generally sensitive to the noise, data missing, and outliers.
To overcome the drawbacks and obtain discriminative features,
the point cluster-based features were proposed to extract
and encode the shape features of the multilevel point clus-
ters [24], [25]. Through fusing airborne lasers scanning point
clouds and images, voxels’ features, including geometric,
textural, and multiple-level image features, were derived for
follow-up classification [26]. Yang et al. [27] combined mul-
tiple aggregation levels of features and contextual features to
recognize road facilities. Geometric, textural, and low-level
and middle-level image features are assigned to laser points
which are quantified into voxels. Frome et al. [28] introduced
two shape descriptors of 3-D shape contexts and harmonic
shape contexts, to obtain a high recognition rate on noisy
scenes. In a rule-based hierarchical semantic classification
scheme, Rau et al. [29] employed geometry-spectral informa-
tion and topology-related features to 3-D point clouds, which
were classified into five categories including road, roof, grass,
tree, and facade.

The above hand-crafted features often fail to adequately uti-
lize the consistency and complementary information between
points. In other words, the abovementioned features are
difficult to capture high-level semantic structures. Although
the features learned from most of the current deep-learning
methods [30]–[36] can generate high-quality point cloud

classification results, these methods do not adequately recog-
nize 3-D point clouds due to unorganized distribution, uneven
point density, and time consuming.

B. Supervised Methods

In recent years, many supervised methods are proposed to
classify point clouds [37]–[39]. Guo et al. [40] proposed a
supervised classification method to recognize objects from
point clouds using a JointBoost classifier, and the features
are computed based on the echo and geometry informa-
tion of a light detection and ranging (LiDAR) point cloud.
Mallet et al. [41] utilized a multiclass support vector machine
(SVM) based on the echo amplitude and radiometric features
to classify point clouds decomposed from the full-waveform
LiDAR. Negri et al. [42] adopted a local adjustment of
the separating hyperplane based on contextual information,
which is used to displace the separation hyperplane defined
by the SVM. Lodha et al. [43] used the SVM to classify
the aerial LiDAR point clouds into trees, grass, roads, and
buildings based on the five features including height (HI),
HI variation, normal variation, LiDAR intensity, and image
intensity. In order to classify land use and land cover maps
from high-resolution LiDAR data, García-Gutiérrez et al. [44]
utilized a contextual classifier which combines the SVM and
evolutionary majority voting. Niemeyer et al. [45] integrated
a random forest classifier into the conditional random field
to classify complex urban scenes. Lafarge and Mallet [46]
employed an energy minimization optimized by graph-cut-
based algorithm to classify the point set. To reduce the
intensive labeling in supervised methods, Li et al. [3] and
Zhang et al. [7] proposed approaches to automatically generate
training data from the input data.

C. Semisupervised Methods

Compared with the supervised algorithms, the semisu-
pervised methods need less labeled training data. The
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latter can utilize a large amount of unlabeled data to
improve the performance of classification. Joachims [47] pro-
posed transductive SMs to minimize the misclassifications.
Blum and Mitchell [48] provided a probably approximately
correct-style framework to learn from unlabeled data and
labeled data. Cai et al. [49] proposed semisupervised dis-
criminant analysis, which used the unlabeled data to estimate
the intrinsic geometric structure and used the labeled data to
maximize the separability of different classes.

Recently, semisupervised learning based on graph Laplacian
has gained great research interest. In general, the graph reg-
ularization propagates the label information from the labeled
data to the unlabeled data to improve the classification results
of semisupervised learning methods [50]. Based on the graph
regularization term, Belkin et al. [51] introduced Laplacian
regularized least squares (LapRLS) and Laplacian SVMs that
integrate the labeled and unlabeled data in a general-purpose
learner. Nie et al. [52] proposed a flexible manifold embed-
ding (FME) framework for semisupervised and unsupervised
dimension reduction, which can effectively take advantage
of the manifold structure from unlabeled and labeled data.
A semisupervised feature analyzing framework for multimedia
data understanding was proposed in [53], which can learn a
classifier by selecting the discriminating features related to the
semantic concepts. Fang et al. [54] proposed a novel nonneg-
ative sparse graph (NNSG) learning method by unifying the
graph structure learning and linear regression within the same
framework.

III. FEATURE CONSTRUCTION

Terrestrial laser scanning (TLS) point cloud data are gen-
erally incomplete and noisy due to severe occlusions caused
by both self-occlusion and other objects. However, the point-
based features introduced in recent years are sensitive to the
noise and computed inefficient. Since the SIs are robust to the
point cloud with missing data and noise [55], we use the SIs
to construct the feature of the region around a point.

The SI obtains the abundant shape features for surrounding
area of a point in the 3-D scene, which represents the 3-D
spatial information by 2-D histograms. Let Np = {q|q is one
of the neighbor points of p, and |p − q| ≤ r} be the support
region of p. Np is the point set within the sphere whose radius
is r and the centroid is p. SI is generated by projecting the
3-D point clouds onto 2-D image defined in object-oriented
coordinate system with a specific support point p and the
associated normal. Equations (1) and (2) are used to compute
the coordinate of p in the SI

x =
√

‖q − p‖2 − [n · (q − p)]2 (1)

y = n · (q − p) (2)

where x denotes the horizontal coordinate of p in the SI and
y denotes the vertical coordinate of p in the SI. Parameter n
denotes the normal vector of p. p denotes the 3-D coordinates
of p, and q denotes the 3-D coordinates of q .

We create a 5 × 8 SI per point and construct three spheres
with radii of 0.2, 0.8, and 1.4 m, respectively. Subsequently,
a 5 × 8 × 3 SI feature can be generated from the three

spheres. Apart from the SI descriptor, we also calculate a set
of descriptors for each point: mean RGB colors of the points
as seen in the images; the LAB values of the mean RGB; the
normal vector ni of each point; the HI of the point above the
approximated ground plane, and its inverse HI (HI−1), defined
as the distance from the highest point of the object facade in
the gravity vector direction. The full 131-D features of each
point is defined as

Fi
131×1

=
[

RGBT
i

3×1
LABT

i
3×1

nT
i

3×1
SIT

i
120×1

HIT
i

1×1
HI−1T

i
1×1

]
. (3)

IV. METHODOLOGY

In this section, we describe the proposed method for point
cloud parsing, which contains four main parts: feature learn-
ing, cograph regularization, label consistency regularization,
and linear regression. The intrinsic structure of points and label
manifolds integrated by the graph is utilized to constrain the
features. Then, the linear regression is utilized to obtain the
linear classifier for parsing the out-of-sample data.

A. Margin Constraint

The label of an unknown point is usually the same as the
labels of its nearest neighbors. In general, the meaning of
the term nearest is defined with the notion of distance in
data space. It is difficult to measure the similarity between
points using the Euclidean distance due to the high dispersity
and incompletion of point clouds. A suitable distance metric
should reduce the distance between intraclass points and
increase the distance between interclass points. The most
frequently used distance is the Mahalanobis distance with a
positive definite square matrix M .

Given the training data matrix X = {x1, x2, . . . , xn} ⊂
R

d×n , where n is the number of the training data and d is the
dimension of the feature, the distance between two features xi

and x j is defined as

dM(xi , x j ) = ‖xi − x j‖M =
√

(xi − x j )T M(xi − x j )

=
√

(xi − x j )T (AAT )(xi − x j )

= ‖AT xi − AT x j‖ (4)

where M = AAT and A ⊂ R
d×d ′

(d < d ′) is a feature
transformation matrix.

From (4), it is noted that the learning distance metric
matrix M is equivalent to learning the feature transformation
matrix A. Essentially, the metric learning algorithm aims to
seek a separation between sets of data belonging to different
classes. In this paper, we propose the margin constraint to learn
a novel distance criterion that can provide a tradeoff between
intraclass compactness and interclass separability. Specifically,
we define (5) to form the margin constraint condition

�1(A) = 1

nk1

n∑
i=1

k1∑
j=1

‖AT xi − AT x j‖2
2

− α
1

nk2

n∑
i=1

k2∑
j=1

‖AT xi − AT x j‖2
2 (5)
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Fig. 2. Illustration of the margin constraint. (a) Points in the original space.
(b) Points in the transformed space. The yellow dots in the center represent xi ,
the red dots are the points belonging to the same class with xi , and the blue
squares are the points that are different classes with xi . Distances d1 and d ′

1
represent the average distances between points belonging to the same class
before/after the feature transformation. Distances d2 and d ′

2 represent the
average distances between points belonging to different classes before/after
the feature transformation.

where k1 is the number of k1-intraclass neighbor points of xi

and k2 is the number of k2-interclass neighbor points of xi .
It is obvious that the first term of (5) measures the average
distance between the pairwise points belonging to the same
class, representing the compactness of the distribution of
the same class in other words. The second term measures
the average distance between the pairwise points belonging
to the different classes, indicating the separability of the
distribution of different classes. By minimizing the objective
function in (5), the distances between points of the same class
are decreased and the distances between points belonging to
different classes are increased, achieving the maximum margin
between different classes in the transformed space, as shown
in Fig. 2.

B. Cograph Regularization

After the feature learning with the margin constraint, we get
a new d ′-dimensional feature AT X instead of the initial
feature X. While the margin constraint ignores the local
manifold structure, we construct a cograph to ensure the local
consistency of neighboring points by integrating the manifolds
of the feature space and spatial distribution.

Motivated by the assumption that points with a close intrin-
sic geometry relationship in the data distribution usually have
similar feature structure in the feature space [56], we construct
the graph Laplacian GF to express the relationships among
the points. Then, we can build the graph with the i th node
corresponding to the training data xi . Specifically, we select
kF -nearest neighbors of xi according to the weight matrix Ui j ,
which is defined as follows:

Ui j =
{

exp
(−d2

i j

)
xi ∈ NkF (x j ) or x j ∈ NkF (xi )

0 otherwise
(6)

d2
i j = ‖AT xi − AT x j‖2

2 = (xi − x j )
T AAT (xi − x j ) (7)

where di j is the distance between two features AT xi and AT x j .
NkF (xi) is the set of the kF -nearest neighbors of xi according
to di j .

After GF is constructed, we encode the learned point fea-
tures by the following objective function that simultaneously

satisfies the manifold assumption and preserves the local visual
similarity among different points [57]:

�21(A) = 1

2

n∑
i, j=1

Ui j ‖AT xi − AT x j‖2
2

= Tr [(AT X)LF (AT X)T ] (8)

where Tr(·) denotes the trace operator. The Laplacian matrix
LF = DF − U, DF is a diagonal matrix with the diagonal
elements as DFii = ∑

j Ui j .
Since the adjacent points generally have similar feature

properties [49], [58], we design the graph GS to model
the spatial relationships of points according to the spatial
information. Similar to the construction of graph GF , we select
the ks-nearest neighbors by the weight matrix V to construct
the graph GS . The weight matrix V is defined as follows:

Vi j =
⎧⎨
⎩exp

(
−‖pi −p j‖2

2

σ

)
xi ∈ NkS (x j ) or x j ∈ NkS (xi )

0 otherwise
(9)

where Nks (xi) is the set of the kS-nearest neighbors of point
xi according to the Euclidean distance ||pi − p j || and σ is a
scale parameter. The corresponding objective function based
on the manifold regularization is expressed as

�22(A) = 1

2

n∑
i, j=1

Vi j ‖AT xi − AT x j‖2
2

= Tr [(AT X)LS(AT X)T ] (10)

where LS = DS − V; DS is a diagonal matrix of which the
(i , i)th element equals to the sum of the i th row of V.

Combining (8) and (10), the cograph regularization is
formed to exploit the consistent information of features and
the spatial for point clouds. The objective function is defined
as follows:

�2(A) = 1

2

n∑
i, j=1

(Ui j + βVi j )‖AT xi − AT x j‖2
2

= Tr [(AT X)(LF + βLS)(AT X)T ] (11)

where β is a tradeoff parameter.

C. Label Consistency Constraint on Grouped Points

The above margin constraint and cograph regularization
are utilized to learn the feature and discover the intrinsic
geometrical structure of the data manifold. However, there are
no label constraints on intraclass points to deal with the data
with multiclass. We further introduce the label consistency
constraint.

The distance metric should consider the label consistency
of the point clouds, that is, the intraclass points should keep
the label consistency before/after the feature transformation.
Moreover, the points of different categories should not be
mixed together. To obtain the label consistency and the
discriminative distance metric, we propose the group label
matrix Q. For example, assuming that x1 and x2 belong to
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class one, x3 and x4 belong to class two, and x5 and x6 belong
to class three, then Q can be defined as

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The corresponding objective function can be defined as

�3(A, G) = ‖Q − GAT X‖2
F + γ ‖G‖2

2 (12)

where G is a weight matrix, γ is a parameter used to balance
the weight of second term in the formula, and the second term
is a penalty term to avoid overfitting.

D. Label Consistency Constraint on Single Point

When a point has similar feature to its surrounding points,
there is a high possibility that the points belong to the same
class. We adopt the semisupervised method based on the
manifold smoothness with labels to regularize the local and
global label consistencies, learn the predicted label matrix
F ∈ R

n×c, and further maintain the feature similarity between
points. The feature transformation matrix A and predicted label
matrix F are further regularized by the following objective
function:

�4(F, A) =
n∑

i, j=1

(Ui j + βVi j )‖Fi − F j‖2
2 +

n∑
i=1

‖Fi − Yi‖2
2

(13)

where Y ⊂ R
n×c is the label matrix used to make the point

cloud classification results are consistent with the given labels
and c is the class number. Yi j indicates the j th data of Yi .
Yi j = 1 if xi belongs to the j th class; otherwise, Yi j = 0.

The first term of (13) is used to simultaneously optimize the
relationships among the points and the classification results.
In the second term, the classification results are learned
with global and local consistencies, since the actual label is
integrated into the term.

E. Linear Regression

It is noted that the predicted label matrix F is constrained
by the semisupervised algorithm, and only the classification
results of points that are vertices of the graphs can be obtained
using F. For the out of sample, that is, test data, it is inefficient
and time consuming to add these points into the graphs.
To classify the out-of-sample data effectively, we present a
new linear transformation to convert F into the linear classifier,
which learns the transformation matrix H ∈ R

d ′×c and label
matrix F ∈ R

n×c by the linear regression. The objective
function can be defined as

�5(H) = ‖(AT X)T H − F‖2
F . (14)

Combining the constraints of (5) and (11)–(14), the joint
objective function of our method can be defined as follows:

�(A, G, F, H)

= �1 + λ1�2 + λ2�3 + λ3�4 + λ4�5

= arg min
A,G,F,H

1

nk1

n∑
i=1

k1∑
j=1

‖AT xi − AT x j‖2
2

− α
1

nk2

n∑
i=1

k2∑
j=1

‖AT xi − AT x j‖2
2

+ λ1Tr [(AT X)(LF + βLS)(AT X)T ]
+ λ2

(‖Q − GAT X‖2
F + γ ‖G‖2

2

)

+ λ3

⎛
⎝ n∑

i, j=1

(Ui j + βVi j )‖Fi − F j‖2
2 +

n∑
i=1

‖Fi − Yi‖2
2

⎞
⎠

+ λ4‖(AT X)T H − F‖2
F (15)

where λ1, λ2, λ3, and λ4 are used to balance the weight of each
term. ‖ • ‖ denotes the norm of a matrix, which is generally
l2 norm or Frobenius norm.

V. OPTIMIZATION ALGORITHM

For the highly nonlinear optimization problem such as (15),
it is impractical to solve the variables H, A, G, and F using
the gradient descent method or Newton’s method. We adopt
an iterative algorithm to optimize the variables, in which
the variables can be optimized, respectively, in each iteration
as other three variables are fixed. In this case, � can be
taken as the linear function of H, G, and F, so we can
obtain the minimum value without computing the nearest
gradient. Although the optimization of A is still nonlinear,
the difficulty of the optimization for A is significantly reduced
compared with optimizing the four variables simultaneously
by the gradient descent method. In practice, our algorithm can
converge very quickly during the iteration process.

A. Update H

We rewrite (15) to the following equation as A, G, and F
are fixed:

�(H) = arg min
H

λ4‖(AT X)T H − F‖2
F . (16)

Equation (16) is an unconstrained optimization; we compute
its derivative

∂�(H)

∂H
= 2λ4AT XXT AH − 2λ4AT XF. (17)

If AT XXT A is a singular matrix, B = (AT XXT

A + μI)−1AT X; otherwise, B = (AT XXT A)−1AT X. μ is
a positive constant and I is a unit matrix. By setting the
derivative ∂�(H)/∂H = 0, we obtain the following equation:

H = BF. (18)
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B. Update G

As H, A, and F are fixed, we rewrite (15) as follows:

�(G) = arg min
G

λ2
(‖Q − GAT X‖2

F + γ ‖G‖2
2

)
. (19)

Equation (19) is also an unconstrained optimization.
We compute its derivative

∂�(G)

∂G
= 2λ2(GAT X − Q)XT A + 2λ2γ G. (20)

By setting the derivative ∂�(G)/∂G = 0, we obtain

G = QXT A(AT XXT A + γ I)−1. (21)

C. Update F

As H, A, and G are fixed, (15) can be rewritten as

�(F) = arg min
F

λ3

⎛
⎝ n∑

i, j=1

(Ui j + βVi j )‖Fi − F j‖2
2

+
n∑

i=1

‖Fi − Yi‖2
2

⎞
⎠

+λ4‖(AT X)T H − F‖2
F

= arg min
F

λ3(Tr (FT LF) + Tr ((F − Y)T S(F − Y)))

+ λ4‖(AT X)T H − F‖2
F (22)

where L = LF + βLS; S ∈ R
n×n is a diagonal matrix. If data

in X are labeled, Sii = 1; otherwise, Sii = 0. We substitute
H in (18) into (22) and compute the partial derivative of (22)
with respect to F

∂�(F)

∂F
= 2λ3(LF + SF − SY) + 2λ4EF (23)

where E = (XT AB−I)T (XT AB−I); by setting the derivative
∂�(F)/∂F = 0, we get

F =
(

S + L + λ4

λ3
E
)−1

SY. (24)

D. Update A

As H, F, and G are fixed, (15) can be rewritten as

�(A) = arg min
A

1

nk1

n∑
i=1

k1∑
j=1

‖AT xi − AT x j‖2
2

− α
1

nk2

n∑
i=1

k2∑
j=1

‖AT xi − AT x j‖2
2

+ λ1Tr [(AT X)(LF + βLS)(AT X)T ]
+λ2‖Q − GAT X‖2

F

+ λ3

n∑
i, j=1

Ui j ‖Fi − F j‖2
2 + λ4‖(AT X)T H − F‖2

F .

(25)

We obtain its partial derivative with respect to A

∂�(A)

∂A
= 1

nk1

n∑
i=1

k1∑
j=1

2CA − α
1

nk2

n∑
i=1

k2∑
j=1

2CA

+ λ1

⎛
⎝−

n∑
i, j=1

Ui j CAR +
n∑

i, j=1

(Ui j + βVi j )CA

⎞
⎠

+ 2λ2X(XT AGT − QT )G

+ λ3

⎛
⎝−

n∑
i, j=1

Ui j CA‖Fi − F j‖2
2

⎞
⎠

+ 2λ4X(XT AH − F)HT (26)

where

C = (xi − x j )(xi − x j )
T (27)

R = (xi − x j )
T AAT (xi − x j ). (28)

In order to optimize A, we compute the function cost of (25)
and the gradient utilizing (26). Then, A can be updated using
the unconstrained optimizer.

E. Initialization of A, G, and H

We first define a weight matrix W ⊂ R
n×n , of which the

(i , j)th element is computed as Wi j = ‖xi − x j‖2
2, and n is

the number of the training data. We compute the average
value θ of all the elements in W, θ = ∑

i
∑

j Wi j /n(n − 1).
Then, the feature transformation matrix A is initialized as the
following form:

A =

⎡
⎢⎢⎢⎢⎢⎣

1

θ
· · · 0 · · · 0

...
. . .

...
...

...

0 0
1

θ
· · · 0

⎤
⎥⎥⎥⎥⎥⎦

.

After the initialization of A, we initialize H and G,
as denoted in (18) and (21), respectively. The experiments
have verified that variables initialized in this way converge
faster than the way initialized with random numbers.

As the output of our method is derived (see Algorithm 1),
we use transformation matrices A and H to classify the point
cloud

li = arg max
j

((
xT

i AH
)

1× j

)
(1 ≤ j ≤ c). (29)

VI. EXPERIMENTAL RESULTS

To validate the performance of our method, we perform both
qualitative and quantitative evaluations on the point clouds of
four outdoor urban scenes.

A. Data Sets

1) The point cloud of the first scene (scene I) is collected
by the TLS scanner in a single scan. Four-class objects,
such as cars, trees, pedestrians, and buildings, appear
in the urban scene. The scene contains a lot of trees
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Algorithm 1 Implementation of the Proposed Method
Input: The training matrix X, the group label matrix Q,
the label matrix Y, parameters α, β, λ1, λ2, λ3, λ4, error ε,
the number of iterations t and learning speed η.
Initialize: Initialize the matrix A, G and H.

1: For number of iterations t.

2: Ft+1 =
(

St + Lt + λ4
λ3

Et

)−1
St Yt ;

3: At+1 = At − η ∂�(A)
∂A ;

4: Gt+1 = QXT At
(
AT

t XXT At + γ I
)−1

;
5: Ht+1 = BFt+1;
6: When convergence criterion satisfied.
7: End for

Output: The feature transformation matrix A, the transfor-
mation matrix H and predicted label matrix F.

with different shapes, so the point cloud is generally
incomplete and noisy because of the severe occlusions
caused by the trees or self-occlusion. The point density
of the point cloud is uneven and changes with respect
to the distance between the objects and the scanner.

2) Semantic-8 data set (scene II) is captured by the Swiss
Federal Institute of Technology Zurich using the TLS
scanners. The density of the point cloud changes greatly,
and it covers a range of diverse objects: terrain, trees,
shrubs, buildings, hard scape, and cars, where hard scape
is some artifacts.

3) The Oakland 3-D data set [59] (scene III) is scanned
by using Navlab11 equipped with side looking SICK
LMS laser scanners around CMU campus in Oakland,
Pittsburgh, PA, USA.
There are seven-class objects such as cars, trees, ground,
buildings, light poles, grass, and shrubs in the scene.

4) The point cloud of scene IV is obtained by the TLS
scanner, which contains the same four categories as the
point cloud of scene I including car, tree, pedestrian,
and building. The data set is mainly used to validate the
generalization ability of the proposed method.

The point clouds of scenes I, II, and IV are obtained by
TLS scanners. There are huge terrain points in the TLS point
clouds. To reduce the computational cost, we remove the
terrain points of TLS point clouds by using the mathematical
morphological filtering algorithm [60].

The class information of each data set is shown in Table I.

B. Comparisons With Other Methods

Since our method is semisupervised, we compare it with the
following four state-of-the-art semisupervised methods. And
we also compare with one supervised method to enhance the
essential value of the proposed semisupervised method.

1) Linear Manifold Regularization for Large-Scale Semi-
supervised Learning (LapRLS) [51]: It develops linear
LapRLS as promising solutions to efficiently exploit the
enormous unlabeled data for learning semisupervised
method.

TABLE I

CLASS INFORMATION OF EACH DATA SET

2) FME: A framework for semisupervised and unsuper-
vised dimension reduction [52]. It proposes a unified
manifold learning framework for dimension reduction
by employing a simple but effective linear regression
function to map the new data points.

3) Discriminating Joint Feature Analysis for Multimedia
Data Understanding (SFSS) [53]: It combines l2,1-norm
regularized feature selection and manifold learning to
learn discriminative features.

4) Learning an NNSG for Linear Regression [54]: In
the NNSG, the linear regression and graph learning
are simultaneously performed to guarantee an overall
optimum.

5) The SVM [61], which is a supervised method.

For the above four semisupervised methods, the nearest
neighbor algorithm is used for the semisupervised classifica-
tion, so the graph Laplacian matrix L need to be calculated
first. For the LapRLS and FME, the weight matrix is calculated
using Ui j = exp((−‖xi − x j‖2)/σ ) if xi and x j are the
k-nearest neighbors; otherwise, Ui j = 0, where σ and k are the
heat kernel and the number of nearest neighbors parameters
which are selected from the sets {10−9, 10−8, . . . , 108, 109}
and {3, 4, 5, 6, 7, 8, 9, 10}, respectively. For SFSS, Ui j = 1
if xi and x j are k-nearest neighbors. In the NNSG, the sample
neighbors and weight matrix can be automatically determined
by using a regularization term. In the LapRLS, FME, SFSS,
NNSG, SVM, and our method, the parameters are, respec-
tively, selected from the set {10−9, 10−8, . . . , 108, 109}.

For each data set, we randomly select t (percent) of the
points per class as the training data and the remaining points
are taken as the test data. In the training data, l (percent) of the
points per class is randomly selected as the labeled data and
the remaining points are utilized as unlabeled data. The test
data are used to test the classification performance, and the
unlabeled data are utilized for semisupervised classification.
For SVM, we only select t per class as the training data and the
remaining points are taken as the test data. To validate the per-
formance of our method, we compare the classification results
of the six methods in terms of F1 measure, precision/recall,
accuracy, and Cohen’s Kappa coefficient.

We set t = 5% and l = 30%, 50%, and 70%, respectively,
in scene I. The classification results of scene I are shown
in Table II. Fig. 3 shows the classification results of our
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Fig. 3. Classification results of scene I. (a) Ground truth. (b) Our method.
(c) FME. Green points represent trees, blue points represent cars, red points
represent buildings, and yellow points represent pedestrians.

method and FME in the setting of t = 5% and l = 70%.
It is noted that the classification accuracy of our method is
higher than those of other methods on unlabeled data, which
explains the graph structure learned by our method can more
effectively transmit labels to unlabeled data. For the testing
data, our method also obtains higher accuracies. As shown
in Fig. 3(b), our method can distinguish these classes of objects
very well.

Our method can be applied to the classification of scenes
with a large number of points, such as scene II, which contains
a total of 2 587 151 points including 404 061 car points,
1 612 232 building points, 352 618 tree points, 172 100 shrub
points, and 46 140 hard scape points. We set t = 1% and
l = 50% for parsing the point cloud of scene II. As shown
in Table III, our method obtains higher performance on
unlabeled data and testing data compared with other methods.
For each class in the scene, our method has higher precisions
and recalls in most categories. Compared with the SFSS, our
method has a lower precision/recall in classifying hard scape
on unlabeled data, but it has higher classification accuracies
(AC) on both unlabeled data and testing data. Simultaneously,
we notice that the precision/recall per class have the same
trend, that is, the precisions and recalls of buildings and
cars are higher because of the large number of points, while
those of hard scape and shrub are lower. Fig. 4 shows the
classification results of our method and the SFSS. It is noted
that some hard scape and shrub points are misclassified into

Fig. 4. Classification results of scene II. (a) Ground truth. (b) Our method.
(c) SFSS. Light green points represent shrub, dark green points represent tree,
blue points represent cars, red points represent buildings, and brown points
represent hard scape.

buildings due to the insufficient learning during the training
stage.

In scene III with seven classes, we set t = 2% and l = 30%,
that is, we select 2% of the points per class as the training data
and 30% of the training points per class as the labeled data.
The classification results are shown in Table IV and Fig. 5.
It is noted that our method also obtains higher accuracies on
unlabeled data and test data compared with other methods.
The precisions/recalls of the classes with less point in the
scene, such as light poles, grass, and shrub, are also lower
than other classes. Compared with the supervised method
SVM, the classification results of the proposed method are
significantly better than those of SVM, which indicates the
superiority of the proposed semisupervised method.

C. Comparisons of Independent Constraint and
the Joint Constraints

To validate the effectiveness of each constraint term,
we compare the independent constraint (IC) and the joint
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TABLE II

SEMISUPERVISED CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON SCENE I

TABLE III

SEMISUPERVISED CLASSIFICATION RESULTS (PRECISION/RECALL, F1, ACCURACY, KAPPA, AND %) OF DIFFERENT METHODS ON SCENE II

TABLE IV

SEMISUPERVISED CLASSIFICATION RESULTS (PRECISION/RECALL, F1, ACCURACY, KAPPA, AND %) OF DIFFERENT METHODS ON SCENE III

constraints for point cloud classification. In the proposed
method, the joint objective function can be divided into the
following learning models.

1) IC1: IC1 is equivalent to the margin constraint, which
is proposed to learn a novel distance criterion that can
provide a tradeoff between intraclass compactness and
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Fig. 5. Classification results of scene III. (a) Ground truth. (b) Our method.
(c) FME. Light green points represent shrub, dark green points represent trees,
dark cyan points represent ground, blue points represent cars, red points
represent buildings, yellow points represent light poles, and brown points
represent grass.

interclass separability. IC1 can obtain the discriminative
features by learning the feature transformation matrix

min
A

1

nk1

n∑
i=1

k1∑
j=1

‖AT xi − AT x j‖2
2

− α
1

nk2

n∑
i=1

k2∑
j=1

‖AT xi − AT x j‖2
2. (30)

2) IC2: To ensure the local consistency of neighboring
points, IC2 adds the cograph regularization term to
the objective function based on IC1 by integrating the
manifolds of the feature space and spatial distribution

min
A

1

nk1

n∑
i=1

k1∑
j=1

‖AT xi − AT x j‖2
2

− α
1

nk2

n∑
i=1

k2∑
j=1

‖AT xi − AT x j‖2
2

+1

2
λ1

n∑
i, j=1

(Ui j + βVi j )‖AT xi − AT x j‖2
2. (31)

3) IC3: Based on the IC2, IC3 further adds label consis-
tency constraint on grouped points to obtain the label

TABLE V

SEMISUPERVISED CLASSIFICATION ACCURACY (%) OF SCENE I

TABLE VI

SEMISUPERVISED CLASSIFICATION ACCURACY (%) OF SCENE II

TABLE VII

SEMISUPERVISED CLASSIFICATION ACCURACY (%) OF SCENE III

consistency and the discriminative distance metric

min
A

1

nk1

n∑
i=1

k1∑
j=1

‖AT xi − AT x j‖2
2

− α
1

nk2

n∑
i=1

k2∑
j=1

‖AT xi − AT x j‖2
2

+1

2
λ1

n∑
i, j=1

(Ui j + βVi j )‖AT xi − AT x j‖2
2

+ λ2
(‖Q − GAT X‖2

F + γ ‖G‖2
2

)
. (32)

For IC1, IC2, and IC3, the following classification function
is learned separately from the feature learning process for
semisupervised classification

min
F,H

n∑
i, j=1

(Ui j + βVi j )‖Fi − F j‖2
2 +

n∑
i=1

‖Fi − Yi‖2
2

+ λ4‖(AT X)T H − F‖2
F . (33)

We set t = 5% and l = 50% for scene I, t = 1% and
l = 50% for scene II, and t = 2% and l = 30% for scene III.
The classification accuracy of unlabeled data and testing data
is reported in Tables V–VII.

From Tables V–VII, we have the following observations.
1) The semisupervised classification results of IC2 are

better than those of IC1. The main reason is that
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Fig. 6. Point cloud of scene IV.

TABLE VIII

SEMISUPERVISED CLASSIFICATION ACCURACY (%) OF

DIFFERENT METHODS ON SCENE IV

the cograph regularization in IC2 can ensure the local
consistency and preserve the local geometric structure
of points.

2) IC3 outperforms IC2 because the label consistency
constraint in IC3 can maintain the same labels for the
points with the same category before and after feature
transformation.

3) Compared with IC1, IC2 and IC3, our method obtains
the best classification performance owing to the joint
learning framework.

D. Generalization

To validate the generalization ability of the proposed
method, we have performed the experiments on the point cloud
data set of Scene IV as shown in Fig. 6. The methods are
trained on the point cloud of Scene I with t = 5%, l = 50%
and are used to classify Scene IV without training again. The
classification results are listed in Table VIII. It is noted that
the proposed method achieves the highest classification results
compared with other methods, which indicates that our method
has better generalization ability and applicability.

E. Sensitivity of the Parameters

In our method, six parameters α, β, λ1, λ2, λ3, and λ4 need
to be tuned in each data set. We set α = 0.3 and β = 10
and mainly discuss the impact of different parameters λ1, λ2,
λ3, and λ4 on the classification results. And we analyze λ2
and λ3 together to discuss the relationship of label consistency
constraint on grouped points and single point. Fig. 7 illustrates
that the AC vary with different parameters in the three data
sets.

It is observed that the highest AC for unlabeled data
is obtained with small λ2 and λ3 as other parameters are
fixed. The classification performance for testing data changes

Fig. 7. AC variation of the parameters λ1, λ2, λ3 and λ4. (a) and (b) Unla-
beled data on scene I. (c) and (d) Test data on scene I. (e) and (f) Unlabeled
data on scene II. (g) and (h) Test data on scene II. (i) and (j) Unlabeled data
on scene III. (k) and (l) Test data on scene III.

little. Through adjusting the parameters λ2 and λ3, the best
classification results for unlabeled data are achieved when the
two parameters are close to 10−4, which demonstrates that the

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on May 26,2021 at 08:19:37 UTC from IEEE Xplore.  Restrictions apply. 



MEI et al.: JOINT MARGIN, COGRAPH, AND LABEL CONSTRAINTS FOR SEMISUPERVISED SCENE PARSING 3811

Fig. 8. Convergence processes of different data sets. (a) Scene I. (b) Scene II.
(c) Scene III.

terms in (6) corresponding to λ2 and λ3 are less significant
to learn the graph structure. It is noted that the classification
results are best for unlabeled data and test data with other
parameters are fixed when λ1 is close to 1. It demonstrates that
the second term corresponding to λ1 in (6) is more significant
to learn a model for fitting labels and classifying new test data.

F. Algorithmic Convergence

In the process of solving the variables H, A, G, and F,
an iterative algorithm is adopted to optimize the variables due
to the highly nonlinear nature of (15). Here, we prove the
objective function can converge to a local optimum quickly by

using the proposed update rule. The functions of optimizing
H, G, and F are convex, so they are convergent. The process
of optimizing A makes the objective function achieve a local
minimum as other variables are fixed. The convergence process
on different data sets is shown in Fig. 8. It can be seen that
our algorithm converges within less than four iterations, which
demonstrates that the proposed update rule is very effective.

VII. CONCLUSION

In this paper, we have proposed a semisupervised learn-
ing method that simultaneously joints the margin constraint,
cograph constraint, and adaptive label consistency constraint
for point cloud classification. The margin constraint can learn
a novel distance criterion to effectively recognize points of
different classes. The cograph is constructed by integrating
the manifolds of the point features and spatial distributions
to characterize the geometry structure and ensure the local
consistency of neighboring points. The proposed method
considers not only the intraclass compactness and interclass
separability of labeled points, but also the label consistency
on grouped points and single point of unlabeled data. To solve
the objective function, an effective and efficient optimization
algorithm is developed, and the convergence is very fast.
Experiments performed on four scene point clouds clearly
confirmed that our method outperforms the state-of-the-art
algorithms.

In the future work, we will combine the distance metric
learning and deep learning to learn a deep metric network
for further enhancing the performance of point cloud
classification.
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