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Self-Supervised Low-Rank Representation (SSLRR)
for Hyperspectral Image Classification

Yuebin Wang, Jie Mei, Liqiang Zhang , Bing Zhang, Anjian Li, Yibo Zheng, and Panpan Zhu

Abstract— Low-rank representation (LRR) can construct the
relationships among pixels for hyperspectral image (HSI) clas-
sification with a given dictionary and a noise term. However,
the accuracy of HSI classification based on LRR methods is
degraded with the redundant and noise information existed in
pixels. The neglect of semantic information around pixels in
the LRR methods may cause “salt-and-pepper” problem in HSI
classification. To avoid the aforementioned problems, a novel
self-supervised low-rank representation method called SSLRR
is developed. In SSLRR, the LRR and spectral–spatial graph
regularization are developed as the pixel-level constraints to
remove the redundant and noise information in HSIs. Superpixel
constraints including data structure and relationship construction
are further utilized to provide supervised feedback information
to the subspace learning to avoid the “salt-and-pepper” problem
generated in the pixel-based classification methods, and simul-
taneously enhance the performance of LRR. The pixel-level and
superpixel-level regularizations are explicitly integrated into a
unified objective function for LRR. By means of the linearized
alternating direction method with adaptive penalty, the solution
to the objective function is achieved by employing a customized
iterative algorithm. We perform comprehensive evaluation of the
proposed method on three challenging public HSI data sets.
We obtain new state-of-the-art performance on these data sets,
and achieve improvements of 44.3%, 13.4%, and 30.1% in overall
accuracy compared to the best LRR method.

Index Terms— Hyperspectral image (HSI) classification, low-
rank representation (LRR), manifold learning, pixel and super-
pixel, self-supervised.

I. INTRODUCTION

LOW-RANK learning plays an important role in recent
computer vision works, such as data clustering and

image classification [1]–[12]. Among these methods, low-rank
representation (LRR) [10] is a typical approach which seeks
the LRR of all data jointly. Each data point is represented
by a linear combination of the bases in a given dictionary;
typically, the data matrix itself is chosen as the dictionary.
In real applications, the data are often noisy and even grossly
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corrupted. The noise term is also added to the objective
function.

LRR can provide a powerful tool for constructing data rela-
tionships in hyperspectral images (HSIs), which also called the
reconstruction matrix. The ijth element of the matrix reflects
the “similarity” between the pixel pair i and j . The relation-
ships between image pixels are used for data clustering and
HSI classification. LRR cannot accurately describe the pixel
relations due to the noise and mixed spectral pixels existed
in HSIs. Thus, the classification accuracy is degraded with
the redundant and noise information in the pixels. As shown
in [13], good data representation quality can help to enhance
the classification accuracy. Removal of the redundant and noise
information from the high-dimensional features of HSIs is the
key toward a successful classification [14].

Subspace learning [17], [21]–[23] and sparse representa-
tion [18]–[20] are effective solutions in reducing redundant
information among the pixels of HSIs. To a certain extent,
dimensionality reduction is equal to subspace learning, that
is, projecting the original high-dimensional feature space to
a low-dimensional subspace where the statistical properties
like independent component analysis (ICA) [15] and princi-
pal component analysis [16] can be well preserved. Sparse
representation has also been proven to be a powerful tool for
extracting features from HSIs [18]–[20]. A similar framework
for dictionary training and feature extraction is also found
in [19] and [20]. Different from [18] and [19], a multiscale
adaptive sparse representation model is proposed in [20]. In the
regions of different scales, the complementary yet correlated
information is incorporated for HSI classification.

In HSIs, the performance of LRR is affected not only by
redundant and noise information, but also by the semantic
information around one pixel. With data samples, traditional
LRR algorithms can obtain the relationships among image
pixels. They inevitably produce the “salt-and-pepper” problem
in HSI classification [24]–[28] since the semantic information
around one pixel is overlooked or the techniques are not well-
established. Thus, the HSI classification accuracy is degraded.
Pixel-based HSI classification methods have been studied
in [24] and [27]. In order to preserve the semantic structural
information in HSIs, superpixel is introduced to avoid the
“salt-and-pepper” problem [33]–[36]. Superpixels are usually
generated using the graph-based algorithms such as normal-
ized cuts [29], entropy rate superpixel segmentation [30], and
the gradient-descent-based algorithms such as SLIC [31] and
SEEDS [32].

Just as Li et al. [37] stated, it is difficult to obtain an accurate
over-segmentation superpixel map for HSI classification. Once
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Fig. 1. Workflow of the SSLRR for HSI classification. (a) Training HSI. (b) Learning process of the SSLRR. (c) Classification results.

spectral pixels within a superpixel belong to different classes,
a wrong classification cannot be avoided because of the “one
label for one superpixel” manner. Under this condition, it is
better to integrate the advantages of the pixel and superpixel
into LRR for obtaining the relationship. LRR can further pro-
vide a better solution for describing the relationships through
pixel-level and superpixel-level constraints. In the pixel level,
with the manifold assumption introduced in [1], [38], and [39],
if two pixels in HSIs have a close latent relationship, they
have similar feature structures in subspace. We can embed
the LRR into the function to remove the redundant and noise
information (also called subspace learning in this paper). In the
superpixel level, the superpixel generation depends on the
clustering results of pixels, where the data representations of
pixels play an important role for pixel clustering. The quality
of subspace learning and the constructed relationships need to
be evaluated for better superpixel generation. The rule of “one
label for one superpixel” manner can be adopted to validate the
pixel clustering purity, which provides the supervised feedback
information to subspace learning of pixels and LRR. Since
the LRR and subspace learning are simultaneously optimized
with the manifold regularization, the feedback information
from superpixel is also enhanced for LRR. Thus, LRR and
subspace learning in pixel level, combined with the purity
control in superpixel level, form a circulation. In this cir-
culation, the relationships between image pixels are learned
by LRR. This method is termed as self-supervised low-rank
representation (SSLRR). The overview of the SSLRR for HSI
classification is shown in Fig. 1. In the SSLRR, the LRR and
the constraints defined in the pixel level and superpixel level
form a unified objective function. The objective function is
solved by means of a customized iterative algorithm. We test
our method on three widely used HSI classification data sets.
The experimental results show that our method can outperform
the related HSI classification methods.

The main contributions of this paper are summarized as
follows:

1) The pixel-level and superpixel-level regularizations are
explicitly integrated into a unified objective function for
LRR.

2) The LRR and spectral–spatial graph regularization are
developed as the pixel-level constraints for removing
the redundant and noise information in HSIs. Superpixel
constraints are further utilized to provide feedback infor-
mation to the subspace learning to avoid the “salt-and-
pepper” problem generated in the pixel-based classifica-
tion methods and enhance the accuracy of LRR.

3) The solution to the objective function is achieved by
employing a customized iterative algorithm, and it con-
verges very fast. Thus, the proposed method is very
effective and efficient for unsupervised HSI classifica-
tion. It far outperforms many recently proposed methods
[i.e., LRR and Laplacian regularized LRR (LapLRR)] in
terms of classification accuracy.

For clarity, we illustrate important notations and definitions
used throughout this paper in Table I.

II. RELATED WORK

In this section, we briefly review the related stud-
ies including LRR, reconstruction independent component
analysis (RICA), and manifold learning.

A. LRR

Given a data matrix X = [X1, X2, . . . , Xn] ∈ R
d×n ,

whose columns are n data samples drawn from independent
subspaces.

Then, each column is represented by a linear combination
of bases in a given data set B. This problem can be formulated
as

min
Z

�Z�∗, s.t. X = BZ (1)

where B is the base matrix and � · �∗ represents the nuclear
norm of a matrix. In real applications, we often choose the
data matrix as the base matrix; thus, (1) can be rewritten as

min
Z

�Z�∗, s.t. X = XZ. (2)

Considering the noise in the data, a noise term E is always
added to (2)

min
Z

�Z�∗ + β�E�2,1, s.t. X = XZ + E (3)
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TABLE I

NOTATIONS AND DEFINITIONS

where �E�2,1 = �n
j=1

��m
i=1 ([E]i j )2 is called l2,1-norm

[40] and β is used to balance the effect of noise. l2,1-norm
encourages the columns of E to be 0, which assumes that the
corruptions are “sample specific,” i.e., some data vectors are
corrupted and the others are clean [3].

B. RICA

Given the unlabeled data set X, the optimization problem
of the standard ICA for estimating independent components
[41], [23] is generally defined as

min
W

1

d

d�
i=1

g(WX)

s.t. WWT = I (4)

where g is the nonlinear convex penalty function, W is the data
transformation matrix, and I is the identity matrix. In addition,
the orthonormality constraint is traditionally utilized to prevent
the row vectors in W from becoming degeneration. A widely
used smooth penalty function is g(·) = log(cosh(·)) [42].

RICA [21] uses a soft reconstruction cost to replace the
orthonormality constraint in ICA. By applying this replace-
ment, RICA can be formulated as the following unconstrained
problem:

min
W

�WT WX − X�2
F + αg(WX) (5)

where α is the tradeoff between the reconstruction error and
sparsity. By swapping the orthonormality constraint with a
reconstruction penalty, RICA learns sparse representations
even on unwhitened data when W is overcomplete [23].

C. Manifold Learning

Many existing subspace clustering methods fail to discover
the intrinsic geometry structure of the data manifold [1]. From
the manifold assumption [43], we know that if two data points
such as Xi and X j are close in the intrinsic geometry of the
data manifold, the representations of the two data points are
also close to each other. Lots of efforts on manifold learn-
ing [43], [44] have shown that the local geometric structure
of the data manifold is effectively modeled through a nearest-
neighbor graph on the sampled data points. A nearest-neighbor
graph is usually used to characterize the local geometry of the
data manifold [1]. For data set X, we build a nearest-neighbor
graph G with its node corresponding to the data point. The
nearest neighbors of each vertex are selected according to
weight matrix Z between one sample and other samples. Under
the manifold assumption, i.e., if two data samples have a close
relationship, their representations are close to each other, the
corresponding objective function is expressed as

� = 1

2

n�
i, j=1

Zi j �Xi − X j�2
2 = tr(XLXT ) (6)

where L is the Laplacian matrix. The manifold learning has
been applied to improve various kinds of algorithms [1],
[45]–[49].

III. SELF-SUPERVISED LOW-RANK REPRESENTATION

In this section, we discuss the details of the proposed
method, i.e., SSLRR. We first present the motivation of
SSLRR, and subsequently describe the objective function of
SSLRR.

A. Problem Formulation

Given an HSI, the 3-D HSI data set A ∈ R
d×n1×n2 can

be built, where d denotes the number of bands and n1 × n2
denotes the number of pixels in each band. Then, we put the
3-D A into a matrix X = [X1, X2, . . . , Xn] ∈ R

d×n , where
n = n1 × n2.

To construct better relationships between image pixels for
HSI classification, the SSLRR is proposed in this paper under
the framework of LRR. LRR unifies the constraints of pixel
level and superpixel level to construct the latent relationships
for image pixels. In the pixel level, a subspace learning method
based on RICA is introduced to remove the redundant and
noise information. By means of the spectral information and
spatial correlation among pixels in the HSI, the spectral–spatial
graph is set up to embed the latent relationships into subspace
learning. Thus, the LRR and subspace learning can be simul-
taneously optimized. In superpixel level, an adaptive mean
shift-clustering algorithm based on the obtained subspace of
pixels is employed to generate superpixels, which provides
feedback information to the subspace learning and LRR in the
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TABLE II

LAND COVER CLASSES WITH SAMPLES’ NUMBER FOR
THE INDIAN PINES DATA SET

pixel level. The feedback information is also considered as the
constraints of subspace learning and LRR. Thus, the LRR and
the constraints defined in the pixel level and superpixel level
form a unified objective function.

B. Objective Function of SSLRR

Considering the conditions defined in the pixel level and
superpixel level, the objective function of SSLRR is con-
structed as follows:

min
W,Z,E

�(W, Z, E) = min
W,Z,E

�WT WX − X�2
F + αg(WX)

+ λ1(�Z�∗ + β�E�2,1)

+ λ2tr((WX)(LZ + γ L2)(WX)T )

+ λ3

�
n�

i=1

exp

��(WX)i − θt�2
2

δs

�
+ η�Z − Zs�2

F

�

s.t. WX = WXZ + E (7)

where W is the data transformation matrix of subspace
learning, Z is the relationships constructed by LRR, and E
is the data noise term. If the i th pixel belongs to the t th
superpixel, θt represents the feature of this superpixel. (Zs)i

is statistical LRR information of superpixel i . λ1, λ2, and
λ3 are the tradeoff factors. L_Z and L2 are the Laplacian
matrices constructed by the spectral and spatial information,
respectively. δs is the heat kernel.

In (7), with LRR, the novel latent relationships between
image pixels can be constructed. �Z�∗ ensures that the learned
relationship matrix has a low rank. Simultaneously, l2,1-norm
encourages the columns of E to be 0. While the redundant
and noise information exists in the original data, thus, the first
term in (6) is introduced to learn the new suitable subspace
for HSI classification. The corresponding term of λ2 is used to
simultaneously optimize the latent relationships and the data
subspace with the spectral–spatial graph, which is under the
assumptions of manifold learning.

1) For pixels in HSI, if xi and x j have a close relationship
in terms of spectral information, they have similar data
structures in a low-dimensional subspace [1].

TABLE III

LAND COVER CLASSES WITH SAMPLES’ NUMBER FOR
THE SALINAS DATA SET

TABLE IV

LAND COVER CLASSES WITH SAMPLES’ NUMBER FOR
THE PAVIAU DATA SET

2) For pixels in HSI, if xi and x j are close spatial distance
in terms of spatial information, they have similar data
structures in a low-dimensional subspace.

To spectral–spatial graph construction, the information of
spectral and spatial are employed to compute the correspond-
ing relationships. Adaptive graphs G1 and G2 are constructed
to represent the spectral and spatial graphs, respectively.

For the spectral graph, weight matrix H1 ∈ R
n×n in graph

G1 is constructed by the LRR matrix Z

H1 = |Z + ZT |/2. (8)

In order to construct the Laplacian matrix of spectral graph,D1
is first computed. It is a diagonal matrix, in which the
(i , i)th element is equal to the sum of the i th row of H1. Then,
the Laplacian matrix of the spectral graph L_Z = D1 − H1.

For the spatial graph, weight matrix H2 ∈ R
n×n in graph

G2 is defined using the following function:

H2i j =
⎧⎨
⎩exp

�
−�Pi − Pj�2

2

ω

�
, xi ∈ Nk(x j ) or x j ∈ Nk(xi)

0, otherwise
(9)
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TABLE V

UNSUPERVISED HSI CLASSIFICATION RESULTS (%) BY SELECTING 20 LABELED SAMPLES FOR EACH CLASS ON THE INDIAN PINES DATA SET

where Nk(x j ) denotes the k-nearest neighbors (KNNs) of
image pixel x j according to the spatial distance �Pi − Pj �.
ω is an alternative parameter. Then, diagonal matrix D2 is
introduced, where the (i , i)th element is equal to the sum of
the i th row of H2. The Laplacian matrix of the spatial graph
L2 = D2 − H2.

Under the manifold assumptions, the spectral and spatial
graphs are combined into the following equation:

T = 1

2

n�
i, j=1

(H1i j + γ H2i j )�(WX)i − (WX) j�2
2

= tr((WX)(L_Z + γ L2)(WX)T ) (10)

where γ is a tradeoff factor.
The corresponding term of λ3 is developed to provide the

supervised feedback information in the superpixel level, which
can also be used for enhancing the qualities of subspace learn-
ing and LRR. From an HSI, we generate the superpixels using
the adaptive mean shift-clustering algorithm [55]. Each pixel
in a superpixel has similar spectral information represented by
the cluster center of the pixels. Since the relationships between
image pixels are constructed by LRR, this corresponding
objective function in (7) is to minimize the average “impurity”
of the class distribution of the pixels in each superpixel
with LRR optimization. The choice of the superpixel thus
attempts to find a consistent overall segmentation in which
each segment contains pixels only belonging to one category.
The class “impurity” is determined by (7), which represents
the class distribution satisfying the following assumptions.

1) Under the same superpixel, pixels should have similar
data structures.

2) Under the same superpixel, the constructed relationships
between image pixels should be consistent with each
other.

The constraint 1) corresponds to subspace learning while the
constraint 2) is to regularize the LRR. This method allows us
to consider full families of segmentation components rather
than a unique, predetermined segmentation. Once trained,

the superpixel generation procedure is a parameter free and
requires no adjustment of thresholds.

At the beginning, the purity of the superpixels is low
due to the insufficient learning of LRR. As the number of
the iterations increases, the feedback information from the
superpixels to the LRR learning is more accurate. In the
optimal stage, more accurate data relationships are achieved in
the procedure of LRR. As the superpixels with class purity are
derived, the performance of HSI classification is thus greatly
enhanced.

Owing to the close dependence of L_Z on Z, auxiliary
variable J ∈ R

n×n is introduced to separate (7). Then,
the whole objective function is transformed into

min
W,Z,E,J

�(W, Z, J, E) = min
W,Z,E

�WT WX − X�2
F +αg(WX)

+ λ1(�J�∗ + β�E�2,1)

+ λ2tr((WX)(L_Z + γ L2)(WX)T )

+ λ3

�
n�

i=1

exp

��(WX)i − θt�2
2

δs

�
+ η�Z − Zs�2

F

�

s.t. WX = WXZ + E, Z = J (11)

where L_Z is constructed by Z.

IV. OPTIMIZATION OF SSLRR

We adopt the linearized alternating direction method with
adaptive penalty (LADMAP) [56] to solve (11). The aug-
mented Lagrangian function of (11) is

L(W, Z, J, E,�1,�2, μ)

= �WT WX − X�2
F + αg(WX)

+ λ1(�J�∗ + β�E�2,1)

+ λ2tr((WX)(L_Z + γ L2)(WX)T )

+ λ3

�
n�

i=1

exp

��(WX)i − θt�2
2

δs

�
+ η�Z − Zs�2

F

�

+ ��1, WX − WXZ − E� + ��2, Z − J�
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TABLE VI

UNSUPERVISED HSI CLASSIFICATION RESULTS (%) BY SELECTING 20 LABELED SAMPLES FOR EACH CLASS ON THE SALINAS DATA SET

+μ

2

��WX − WXZ − E�2
F + �Z − J�2

F



= �WT WX − X�2

F + αg(WX)

+ λ1(�J�∗ + β�E�2,1)

+ λ2tr((WX)(L_Z + γ L2)(WX)T )

+ λ3

�
n�

i=1

exp

��(WX)i − θt�2
2

δs

�
+ η�Z − Zs�2

F

�

+ μ

2

(
�WX − WXZ − E + �1

μ
�2

F + �Z − J + �2

μ
�2

F

)

− 1

2μ

���1�2
F + ��2�2

F

)
(12)

where �1 ∈ R
r×n and �2 ∈ R

n×n are the Lagrange
multipliers and μ > 0 is the penalty parameter.

W is solved when Z, E, and J are fixed. The
optimization problem defined in (12) is written as
follows:

min
W

L(W) = min
W

�WT WX − X�2
F + αg(WX)

+ λ2tr((WX)(L_Z + γ L2)(WX)T )

+ λ3

n�
i=1

exp

��(WX)i − θt�2
2

δs

�

+μ

2

∥∥∥∥WX − WXZ − E + �1

μ

∥∥∥∥
2

F
. (13)

J is solved when W, Z, and E are fixed. The optimization
problem defined in (12) is written as follows:

min
J

L(J) = min
J

λ1�J�∗ + μ

2
�J −

(
Z + �2

μ

)
�2

F

⇔ min
J

λ1

μ
�J�∗ + 1

2

∥∥∥∥J −
(

Z + �2

μ

)∥∥∥∥
2

F
. (14)

Z is solved when W, J, andE are fixed. The optimization
problem defined in (12) is written as follows:

min
Z

L(Z) = min
Z

λ2tr((WX)L_Z(WX)T ) + λ3η�Z − Zs�2
F

+μ

2

��WX − WXZ − E�2
F + �Z − J�2

F



= min

Z

λ2

2

n�
i, j=1

Zi j �(WX)i − (WX) j�2
2

+ λ3η�Z − Zs�2
F

+μ

2

��WX − WXZ − E�2
F + �Z − J�2

F



. (15)

E is solved when W, J, andZ are fixed. The optimization
problem defined in (12) is written as follows:

min
E

L(E) = min
E

λ1β�E�2,1+ μ

2

∥∥∥∥E−
(

WX−WXZ+ �1

μ

)∥∥∥∥
2

F

⇔ min
E

λ1β

μ
�E�2,1+ 1

2

∥∥∥∥E−
(

WX−WXZ+ �1

μ

)∥∥∥∥
2

F
.

(16)
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TABLE VII

UNSUPERVISED HSI CLASSIFICATION RESULTS (%) BY SELECTING 20 LABELED SAMPLES FOR EACH CLASS ON THE PAVIAU DATA SET

Fig. 2. Classification maps of the Indian Pines data set by selecting three labeled samples for each class. (a) False-color image. (b) Ground truth.
(c) Classification map obtained by KNN. (d) Classification map obtained by LLE. (e) Classification map obtained by NNLRS. (f) Classification map obtained
by LRR. (g) Classification map obtained by LapLRR. (h) Classification map obtained by our method.

The Lagrangian multipliers are updated as follows:
(�1)new = (�1)old + μ(WX − WXZ − E)

(�2)new = (�2)old + μ(Z − J). (17)

So far, the solutions of all variables are obtained.
We develop Algorithm 1 to summarize the procedure.

From Algorithm 1, we know that the computational cost
of the proposed method mainly lies in updating the variables:
W, J, Z, and E. W is computed using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) in each itera-
tion. There is a need to compute the objective function cost
and grad, whose complexities are O (drd + rdn + dn2) and
O (rdn + dn2 + dnd + rdr + drd). J is computed with the
cost of O (nm2), whereas Z is computed with the cost of
O (rdn + drd + dn2). The complexity for computing E is O

(rdn + dn2). As c � n and r < d , and the linearized method
is adopted, our proposed method can converge quickly.

More details of SSLRR optimization can be referred to the
Appendixes.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method SSLRR for HSI classification. We first briefly describe
the used HSI data. Afterward, we compare the classification
results of the SSLRR with those of the related approaches.

A. Experimental Data Sets

Three HSI data sets are used to evaluate the performance
of the proposed method.
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Fig. 3. Classification maps of the Indian Pines data set by selecting 20 labeled samples for each class. (a) False-color image. (b) Ground truth. (c) Classification
map obtained by KNN. (d) Classification map obtained by LLE. (e) Classification map obtained by NNLRS. (f) Classification map obtained by LRR.
(g) Classification map obtained by LapLRR. (h) Classification map obtained by our method.

Algorithm 1 SSLRR
Input: Training set X, parametersα, β, γ, η, λ1, λ2, λ3, λ4;
Initialization: W, Z, J, E, L2,�1,�2; μ = 104, μmax =
1010, ρ = 1.1, ε1 = 10−6, ε2 = 10−2;
Procedure:
1: while not converged do
2: Fix the others and update W, J, Z and E respectively by

solving Eq. (13), (14), (15) and (16);
3: Update Lagrange multipliers by Eq. (17);
4: Update μ by μ = min(ρμ, max μ);
5: Check the convergence conditions:

�WX − WXZ − E�F

�X�F
< ε1

�Z − J�F < ε2

6: end while
Output: The matrix W, Z and E.

The first data set is the Indian Pines data set, which was
gathered by AVIRIS sensor over the Indian Pines test site of
North-western Indiana in 1992. It consists of 145×145 pixels
and 224 spectral reflectance bands in the wavelength range
of 0.4–2.5 μ m with a spatial resolution of 20 m. The bands
covering the region of water absorption (104–108, 150–163,
and 220) are removed, and hence 200 out of the 224 bands are
preserved. The data set contains 10 classes and 9620 labeled
pixels. The detailed information is listed in Table II.

The second data set is the Salinas data set, which was
collected by the 224-band AVIRIS sensor over Salinas Valley,
CA, USA. Each image size is 512 × 217 pixels and is

characterized by high spatial resolution (3.7-m pixels). As with
Indian Pines data set, 20 water absorption bands (108–112,
154–167, and 224) out of 224 bands are discarded; thus, 204
bands are used in our experiment. The Salinas data set contains
16 classes and 54 129 labeled pixels, as shown in Table III.

The third data set is the University of Pavia (PaviaU) data
set, which was acquired by the ROSIS-03 sensor over an
urban area, Northern Italy. The spatial size is 610 × 340
and the geometric resolution is 1.3 m. The 12 noisy bands
are removed, and 103 out of the 115 bands are used in our
experiment. There are nine classes and 42 776 labeled pixels
in the PaviaU data set. The details are shown in Table IV.

In Tables II–IV, only 20 labeled samples are listed. In the
evaluation of our proposed method, different numbers of
labeled pixels, such as 3, 5, 10, and 20, are utilized to classify
HSIs.

B. Alternative Approaches

Since our proposed method is unsupervised for the rela-
tionship construction in HSIs, we compared our method with
the following related approaches in terms of HSI classification
accuracy.

1) KNNs: It uses Euclidean distance as the similarity mea-
sure and adopts a Gaussian kernel to reweight the edges.

2) Local Linear Embedding (LLE) [52]: In LLE, the linear
coefficients that best reconstruct each data point from
its neighbors are used to represent the local properties
of each neighborhood.

3) Constructing a Nonnegative Low-Rank and Sparse
(NNLRS) Graph With Data-Adaptive Features [3]:
It builds an NNLRS graph to represent the given data,
which seeks an NNLRS reconstruction coefficient matrix
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Fig. 4. Classification maps of the Salinas data set by selecting 20 labeled samples for each class. (a) False-color image. (b) Ground truth. (c) Classification
map obtained by KNN. (d) Classification map obtained by LLE. (e) Classification map obtained by NNLRS. (f) Classification map obtained by LRR.
(g) Classification map obtained by LapLRR. (h) Classification map obtained by our method.

that represents each data sample as a linear combination
of others to obtain the weights of edges in the graph.

4) Robust Subspace Segmentation by LRR [54]: It finds
the LRR of all data jointly, which is used to define the
affinities of an undirected graph.

5) Enhancing Low-Rank Subspace Clustering by Manifold
Regularization (LapLRR) [1]: In the LapLRR, a mani-
fold regularization characterized by a Laplacian graph
has been incorporated into LRR to exploit the local
manifold structure of the data, resulting in the proposed
Laplacian regularized LRR.

For HSI classification, we use the local and global consis-
tency (LGC) [53] to compare the effectiveness of different
methods. In LGC, the labeled data and unlabeled data need
to be specified for HSI classification. Thus, we follow the
following data settings.

In the KNN and LLE, the number of nearest neigh-
bors is selected from the set {3, 4, 5, 6, 7, 8, 9, 10}.
The distances of the pixel features are calculated using
exp(−(�Xi − X j�2)/ζ )) in the KNN and LLE, where ζ
is the heat kernel, and it is selected from the set {10−9,
10−8, . . . , 108, 109}. The defined graph learning functions

give the number of nearest neighbors and compute the pixel
feature distances in the NNLRS, LRR, and LapLRR. In the
SSLRR, the spatial graph needs to be constructed, in which the
numbers of k are chosen from the set {3, 4, 5, 6, 7, 8, 9, 10},
while the spectral graph does not need to specify the number
of nearest neighbors and compute the pixel feature distances.
ω is also selected from the set {10−9, 10−8, . . . , 108, 109}.
Among these methods, the balancing parameters such as λ1,
λ2, and λ3 are tuned from the set {10−9, 10−8, . . . , 108, 109},
respectively.

In the Indian Pines data set, we select 100% samples as
the classification data. Since there are too many pixels in
the Salinas and PaviaU data sets, we randomly select 10%
samples as the classification data. We further randomly select
s samples of the training data as the labeled data; s is set to 3,
5, 10, and 20, respectively. The remaining data are unlabeled
data.

C. Experimental Results

Three metrics, i.e., overall accuracy (OA), average accuracy,
and Kappa coefficient, are used to evaluate the classifica-
tion results. We report the HSI classification performance of
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Fig. 5. Classification maps of the PaviaU data set by selecting 20 labeled samples for each class. (a) False-color image. (b) Ground truth. (c) Classification
map obtained by KNN. (d) Classification map obtained by LLE. (e) Classification map obtained by NNLRS. (f) Classification map obtained by LRR.
(g) Classification map obtained by LapLRR. (h) Classification map obtained by our method.

Fig. 6. Classification results with varying numbers of labeled samples by KNN, LLE, NNLRS, LRR, LapLRR, and the proposed method. (a) Indian Pines
data set. (b) Salinas data set. (c) PaviaU data set.

different methods (see Tables V–VII, and Figs. 2–6) over
20 random splits on the labeled data set and the unlabeled data
set.

From the results listed in Tables V–VII and illustrated
in Figs. 2–6, we have the following observations.

1) In comparison with the recently proposed methods,
the SSLRR achieves the best classification results for
all testing samples. The classification accuracies on
the three data sets obtained by the SSLRR are much

higher than those obtained by other methods. It indicates
that SSLRR can effectively construct the relationships
among image pixels, which are very useful for HSI
classification.

2) From Figs. 2–5, the SSLRR has more compact HSI clas-
sification results on the HSI data sets. It also validates
that the superpixel generation procedure can provide
useful feedback information for the subspace learning
in the pixel level.
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Fig. 7. Influences of different values of the parameters on the HSI
classification results. (a) and (b) Influences of different values of λ1, λ2, and
λ3 on the classification results for Indian Pines data set. (c) and (d) Influences
of different values of λ1, λ2, and λ3 on the classification results for Salinas
data set. (e) and (f) Influences of different values of λ1, λ2, and λ3 on the
classification results for PaviaU data set.

3) With the number of labeled pixels increasing as shown
in Fig. 6, the classification accuracies for all the com-
pared classifiers are increased. In addition, higher overall
classification accuracies are obtained by the SSLRR
with varying numbers of training samples, demonstrat-
ing that the SSLRR outperforms the other compared
methods. In the SSLRR, the LRR and the constraints
defined in the pixel level and superpixel level form
a unified objective function. The feedback information
from superpixel level can also offer the evaluation results
for LRR. Thus, the constructed spectral–spatial graph
well reflects the relationships between image pixels
in HSIs. Then, the SSLRR achieves much better HSI
classification results.

D. Parameter Analysis

In our method, seven parameters including α, β, γ , η, λ1,
λ2, and λ3 need to be tuned in each data set. We set α = 0.01,
β = 10, γ = 1, and η = 0.01 in the experiment. We mainly
discuss the influences of the main parameters λ1, λ2, and λ3
on the HSI classification results.

Fig. 8. Convergence processes of different data sets. (a) Indian Pines data
set. (b) Salinas data set. (c) PaviaU data set.

λ1, λ2, and λ3 correspond to the terms of LRR, the spectral–
spatial graph regularization, and superpixel-level feedback
information, respectively. As shown in Fig. 7, we tune the
parameters as we classify each data set. The parameters that
make the HSI classification results the best are different for
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each data set since each data set has its own distinctive data
structure. It is found that the value of λ3 is larger than those
of λ1 and λ2 among three data sets, which proves that the
superpixel-level constraint plays a more important role in HSI
classification. From Fig. 7, it is noted that λ1 and λ2 are nearly
the same. This indicates that the constraints of the LRR and the
spectral–spatial graph regularization in pixel level are equally
important in HSI classification.

E. Algorithmic Convergence

Solving W, Z, and E in (7) simultaneously is very difficult
due to the highly nonlinear nature of (7). With the least-squares
quantization, we adopt a customized iterative algorithm to
optimize the variables. The objective function can converge
to a local optimum by using Algorithm 1. With the auxiliary
variable added, four variables W, Z, E, and J need to be opti-
mized in (11). In each iteration, with the help of the LADMAP,
the process for optimizing W makes the objective function
achieve a local minimum as other variables are fixed. The
function of optimizing Z is convex, and thus it is convergent. E
and J are optimized with the singular value thresholding (SVT)
operator and l2,1 minimization operator, respectively. With the
optimized variables, the objective function can converge to a
local optimum.

The convergence processes under different data sets are
shown in Fig. 8. It is noted that our proposed objective function
can converge to a local optimum (or even a global minimum)
and converge very fast. The objective function defined in (11)
usually reaches the convergence within about five iterations
for each HSI data set. Therefore, the proposed solution in
Algorithm 1 is very effective.

VI. CONCLUSION

In this paper, a novel LRR method called SSLRR is
developed for HSI classification. The main contribution of
the SSLRR lies in explicitly integrating the pixel-level and
superpixel-level regularizations into an objective function for
LRR. Simultaneously, the criterion defined in superpixel level
can provide the feedback information to subspace learning
of pixels and LRR. Thus, relationship expression between
image pixels is enhanced for HSI classification. The solu-
tion to the objective function is achieved by employing
the LADMAP algorithm, and it converges very fast. Then,
the classification efficiency is high. Experimental results on
three HSI data sets show the effectiveness of the SSLRR.
We obtain the state-of-the-art performances on these data sets
and achieve absolute boosts in OA compared to the best
LRR method.

In future work, we will combine the SSLRR with deep
learning techniques to automatically learn more representative
features of the pixels and superpixels for further enhancing
performance of HSI classification.

APPENDIX

A. Optimization for W

W is solved when Z, E, and J are fixed. The optimization

problem defined in (12) is written as (13)

min
W

L(W) = min
W

�WT WX − X�2
F + αg(WX)

+ λ2tr((WX)(L_Z + γ L2)(WX)T )

+ λ3

n�
i=1

exp

��(WX)i − θt�2
2

δs

�

+ μ

2

∥∥∥∥WX − WXZ − E + �1

μ

∥∥∥∥
2

F
.

The derivative of (13) with respect to W is computed, and
then we have the following result:
∂L(W)

∂W
= 2W(WT WXXT + XXT WT W − 2XXT )

+ α
∂g(WX)

∂W
+ 2λ2WX(L_Z + γ L2)

T XT

+ 2λ3

n�
i=1

exp

��(WX)i· − θt�2
2

δs

�

× (W(Xi·XT
i· ) − θt XT

i· )

+ μ

(
WX (I−Z)+ �1

μ
−E

)
×(X(I − Z))T (18)

where

∂g(WX)

∂Wi j
=

n�
k=1

tanh(Wi·X·k)X j k . (19)

Given a training data matrix X, we compute the function cost
of (13) and the gradient using (18). Then, the objective func-
tion defined in (13) is minimized through the unconstrained
optimizer (e.g., L-BFGS) to update W. Wi· denotes the i th
row of matrix W.

B. Optimization for J

J is solved when W, Z, andE are fixed. The optimization
problem defined in 12) is written as (14)

min
J

L(J) = min
J

λ1�J�∗ + μ

2

∥∥∥∥J −
(

Z + �2

μ

)∥∥∥∥
2

F

⇔ min
J

λ1

μ
�J�∗ + 1

2

∥∥∥∥J −
(

Z + �2

μ

)∥∥∥∥
2

F
.

We adopt SVT operator [50] to compute the optimal J.
First, we obtain the singular value decomposition of the matrix
Z + ((�2)/μ) as follows:

Z + �2

μ
= U�VT (20)

where � = diag({ζi }1≤i≤m) (m is the rank) and U ∈ R
n×m

and V ∈ R
n×m are the orthogonal matrices. Then, we can

obtain the optimal solution of J with singular value shrinkage

J = U�λ1
μ

�V T (21)

where �(λ1/μ)� = diag({ζi − (λ1/μ)}+).
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C. Optimization for Z

Z is solved when W, J, and E are fixed. The optimization
problem defined in (12) is written as (15)

min
Z

L(Z) = min
Z

λ2tr((WX)L_Z(WX)T ) + λ3η�Z − Zs�2
F

+μ

2

��WX − WXZ − E�2
F + �Z − J�2

F



= min

Z

λ2

2

n�
i, j=1

Zi j �(WX)i· − (WX) j ·�2
2

+ λ3η�Z − Zs�2
F

+μ

2

��WX − WXZ − E�2
F + �Z − J�2

F



.

The derivative of (15) with respect to Z is computed, and
then we have the following result:

∂L(Z)

∂Z
= λ2

2

n�
i, j=1

�(WX)i· − (WX) j ·�2
2 + 2λ3η(Z − Zs)

+μ((WX)T (WXZ + E − WX) + Z − J). (22)

We can set the derivative equation (22) to 0 and directly
obtain Z

Z =
�

(WX)T WX + I + 2λ3η

μ
I
�−1

×
⎛
⎝J − λ2

2μ

n�
i, j=1

�(WX)i· − (WX) j ·�2
2

+ (WX)T (WX − E) + 2λ3η

μ
Zs

⎞
⎠ . (23)

D. Optimization for E

E is solved when W, J, andZ are fixed. The optimization
problem defined in (12) is written as (16)

min
E

L(E)

= min
E

λ1β�E�2,1 + μ

2

∥∥∥∥E −
(

WX − WXZ + �1

μ

)∥∥∥∥
2

F

⇔ min
E

λ1β

μ
�E�2,1 + 1

2

∥∥∥∥E − (WX − WXZ + �1

μ
)

∥∥∥∥
2

F
.

(24)

This problem has been solved by Yang et al. [51], and its
optimal solution is given by

E·i =
⎧⎨
⎩

�Q·i�2 − λ1β
μ

�Q·i�2
Q·i , if �Q·i�2 >

λ1β

μ
0, otherwise.

(25)

where Q = WX − WXZ + ((�1)/μ) and E·i denotes the i th
column of matrix E.
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