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Topology-Enhanced Urban Road Extraction via
a Geographic Feature-Enhanced Network

Xingang Li , Yuebin Wang , Member, IEEE, Liqiang Zhang , Suhong Liu , Jie Mei , and Yang Li

Abstract— Urban road extraction has wide applications in
public transportation systems and unmanned vehicle navigation.
The high-resolution remote sensing images contain background
clutter and the roads have large appearance differences and
complex connectivities, which makes it a very challenging task
for road extraction. In this article, we propose a novel end-to-end
deep learning model for road area extraction from remote sensing
images. Road features are learned from three levels, which can
remove the distraction of the background and enhance feature
representation. A direction-aware attention block is introduced to
the deep learning model for keeping road topologies. We compare
our method on public remote sensing data sets with other related
methods. The experimental results show the superiority of our
method in terms of road extraction and connectivity preservation.

Index Terms— Convolutional neural networks(CNNs), deep
learning, image segmentation, road extraction, topology
relationship.

I. INTRODUCTION

ROAD detection is one of the classical research topics
in the remote sensing field. Numerous applications have

benefitted from road detection, such as urban design, vehicle
navigation, unmanned vehicles, and geospatial data integra-
tion. Many studies focus on algorithms to separate auto-
matically the road from the background information [1]–[4].
There exist two categories of road detection in general: road
area extraction, which attempts to obtain information on
road area, and road centerline extraction, whose target is to
obtain single-pixel information from the road centerline. Since
the road centerline can be obtained from the road area by
morphological thinning algorithms [4], road area extraction is
considered our target, and road detection is mentioned later
specifically for road area extraction.
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One of the most important challenges in road detection
is numerous vehicles, buildings, and trees that cause road
discontinuities and incompleteness in remote sensing images
under complex urban traffic and geographical environments.
Two resolving patterns are adopted to improve the result
completeness in topological space: enhancing the feature exca-
vation of road by more scientific network structures, such as
the deeper network [4], [5] and the multitask network [6], [7],
and using a two-step workflow to refine the result produced by
the deep learning model [1], [8]. However, the current methods
based on the first pattern are far sufficient to extract the
features of the remote sensing images, nor does the two-step
approach take advantage of the end-to-end benefits of deep
learning.

The spatial and shape information of the roads usually
can be represented by the three levels: points, polylines, and
polygons. In this article, we propose a novel deep learning
model for implementing road extraction on the three levels
from high-resolution remote sensing images. Three kinds of
blocks, i.e., pixel block, edge block, and region block, con-
tribute to the final accuracy from different aspects. To refine
further the topological relationships, we add a direction-aware
attention block to the deep learning model, reformulat-
ing the segmentation as the connectivity-prediction task.
The feature excavation and topology-refining processes are
end-to-end trained, which benefits the parameter optimization.
We compare the performance of our model with the other five
methods on the SpaceNet data set [9]. The experimental results
demonstrate the proposed model is superior to the others in
road segmentation and topology preservation.

Our goal is to extract robust and discriminative features
for road extraction and connectivity. The contributions of our
method are threefold.

1) A novel deep learning framework for effectively
extracting the road shape features from complex
high-resolution remote sensing images is presented. The
framework can effectively recognize the roads in three
scales with cluttered background.

2) The shape features including point, edge, and area char-
acteristics are automatically learned from three levels,
i.e., pixels, edges, and regions through integrating the
three levels into the deep learning network.

3) A direction-aware attention block is introduced to the
deep learning model for keeping road topologies. The
block keeps the road connectivity and further improves
the road-recognition accuracy.

0196-2892 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on May 26,2021 at 07:20:24 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2665-8671
https://orcid.org/0000-0002-6978-4558
https://orcid.org/0000-0002-4175-7590
https://orcid.org/0000-0002-4969-5304
https://orcid.org/0000-0002-9789-4025


8820 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 12, DECEMBER 2020

II. RELATED WORKS

In the early period of road detection, the mainstream
approaches tended to define some criteria and traversed the
whole image to select the pixels that matched the criteria,
such as in geometrically constrained template matching [10]
and color-based template matching [11]. The criteria-match
method is limited to both specific criteria and the traver-
sal algorithm, which is inefficient and poorly generalizable.
Methods based on machine learning discern the road via
presetting certain road features. Simler [12] has a support
vector machine (SVM) method that detects roads using color,
spectral, and geometrical features. Zhang and Couloigner [13]
preseted many shape descriptors to classify the road seg-
ments obtained by the k-means clustering algorithm. However,
the handcrafted feature is hard to design and not robust enough
in a complex situation.

Many convolutional neural network (CNN)-based road-
detection approaches have achieved the state-of-the-art results
in recent years [6], [14]–[16]. Peng et al. [17] aggre-
gated a multiscale context for feature learning based on the
CNNs to achieve better performances in road segmentation.
Lu et al. [18] build a multitask learning (MTL) system to
detect road centerlines. Zhang et al. [4] proposed a method
called ResUnet, which combines symmetric construction with
residual networks [19] to extract the road area information
and achieved the state-of-the-art results relative to the com-
parison methods. In the DeepGlobe Road Extraction Chal-
lenge competition [20], Zhou et al. [5] won the first prize
with a creative feature extraction structure called D-Linknet,
which appends feature excavation layers with residual blocks.
Ventura et al. [3] proposed an algorithm that obtains a road
graph of the whole urban aerial image by patch-based iteration.
However, it fails to deal with some complicated situations,
such as the overpasses. RoadNet, proposed by Liu et al. [7],
successfully integrates the road regions, edges, and centerlines
in a network by three CNNs that correspond to three semantic
segmentation tasks: road area detection, road edge detection,
and road centerline detection. The satisfactory results of
RoadNet show that multiple types of features are able to
enhance each other in an end-to-end network model. Many
studies attempt to integrate other geographical data. Some
approaches extracted road information from light detection
and ranging (LiDAR) data [21]–[23]. Yuan and Cheriyadat
[24] infered the road network from the noisy GPS data and
guided the road area segmentation. However, both the LiDAR
and GPS data are hard to acquire, and the preprocessing of
these data is complicated.

A. Pixel-Level Feature

The pixel-level feature is produced by a neural network with
pixel-to-pixel workflow, i.e., each road pixel has a correspond-
ing pixel in the prediction maps, which is powerful to describe
the road by accumulating spatial and spectral information
over receptive fields. The method with pixel-to-pixel work-
flow includes the fully convolutional networks (FCNs) [25],
Unet [26], Unet++ [27], D-Linknet [5], SegNet [2], and
ResUnet [4]. Because of the background clutter in the remote

sensing image, the results using the traditional models [28]
may be largely affected by the features extracted from the
background of the image.

B. Edge-Level Feature

The edge-level feature has an advantage in discerning
the boundaries between different objects. In earlier stud-
ies, the edge-detection methods, including Candy [29] and
Sober [30], mainly focus on using the color and intensity infor-
mation of the images. DeepContour [31] and DeepEdge [32]
develop the edge-level automatic hierarchical feature with
the deep neural network. Liu and Lew [33] built hierar-
chical supervisory convolutional networks with relaxed deep
supervision to strengthen edge detection. Xie and Tu [34]
propose a holistically nested-edge-detection (HED) network to
extract the edge information. Based on HED, Liu et al. [35]
proposed a deeper convolutional hierarchy network, achieving
better accuracy in the field of edge detection. The catego-
rywise edge-detection model named CASENet presented by
Yu et al. [36] achieved fine-edge-detection performance in
the Street View data set. Marmanis et al. [28] showed that
boundary detection significantly optimizes the parameters of
the classification network. Liu et al. [7] also proved that
the accurate edge detection can refine the road-recognition
accuracy. We describe the workflow as pixel to edge. The
edge-level feature has more sensitivity in the high-frequency
part of images, exerting positive impacts on road detection.

C. Region-Level Feature

Scene classification is an important topic in the remote
sensing field. The solution has evolved from the bag of visual
words [37], [38] to deep learning-related methods [39]–[41].
We take the pattern of scene classification as the pixel-
to-region workflow. The region-level feature preserves the
contextual information during the scene classification process,
considering more information around the road when discerning
the road.

D. Feature Fusion

The idea of feature fusion has been applied to various visual
tasks in recent years [2], [7], [26], [27], [42], proving that
the performance of the segmentation task can be improved
by stacking different level features. The MTL framework
also gives a guideline to integrate the different levels of
features [43]–[45].

E. Topology Enhancing

There are a lot of studies on road topology structure preser-
vation. The road topology is simulated by the point process
[46]. The Markov random field is used to correct the topology
of the roads [8]. Zhang et al. [47], [48] proposed the model
based on the generative adversarial network (GAN), obtaining
complete road networks by refining the imperfect road topol-
ogy. DeepRoadMapper [1], reasoning the missing connections
of the CNN, outputs as a shortest path problem. Bastani
et al. [49] used the postprocessing heuristics to infer the
graph connectivity. The PolyMapper [50] has the CNN outputs
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Fig. 1. Illustration of our network architecture for road detection. The pixel block, edge block, and region block are proposed to improve feature excavation.
In the stage of feature refining, we have the direction-aware attention block (abbreviated as direction block) recalibrating the stacked features to model the
interdependences between the road pixels.

connected sequentially by the recurrent neural networks
(RNNs). RoadNet [7] manually tags the connection infor-
mation in remote sensing images to train the network.
Ventura et al. [3] used the patch-based method to solve the
road topology problem. ConnNet, a novel pixel-connectivity
network proposed by Kampffmeyer et al. [51], improved the
overall semantic rationality and region smoothing by modeling
the adjacent relationships between the pixels. Inspired by that,
we introduce a direction-aware attention block to enhance the
integrity of the topology information in the remote sensing
images.

III. PROPOSED METHOD

The features are extracted by three cascaded CNN struc-
tures based on the pixel, edge, and region levels. Each
level contributes distinctive features for road segmentation via
MTL [43]. A direction-aware attention block is proposed
to enhance the connectivity of the roads by predicting
the connectivity probabilities of each road pixel with its
neighboring ones, reformulating the segmentation as the
connectivity-prediction task [51]. Fig. 1 shows the architecture
of the method.

A. Feature Learning

1) Pixel-Level Feature Learning: We improve the
ResNet50 [19] model to obtain robust pixel-level feature
representation. The repeated convolution and pooling
operations in original ResNet50 reduces the resolution of
the feature map stepwise, retaining rich and multiscale
semantic information. Each convolutional layer is followed
by a rectified-linear-unit (ReLU) [52] activation function to
alleviate the vanishing gradient problem [53]. Then, four
deconvolution layers are added, upsampling the feature map
to the size of 64 × 64, 128 × 128, 256 × 256, and 512 × 512
respectively. The probability map is obtained by the softmax
layer and supervised by the pixel labels (depicted by the
green dashed lines in Fig. 1).

2) Edge-Level Feature Learning: The edge-level feature
learning structure consists of four edge blocks. Each edge
block contains two convolution layers and a deconvolution
layer. Table I lists the details of the structure, which is inspired
by the deeply supervised network (DSN) [54]. Four outputs
of the pixel blocks, which we call the shared feature maps
temporarily, are used as the input of the edge-level feature
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TABLE I

EDGE-LEVEL FEATURE LEARNING PROCESS. “CONV” DENOTES THE
CONVOLUTIONAL LAYER. “DECONV” AND “SOFTMAX” REPRESENT

THE DECONVOLUTION OPERATION AND SOFTMAX

FUNCTION, RESPECTIVELY

learning structure, introducing multiscale semantic information
to edge level. The shared feature maps are convoluted by a
kernel size of 3 × 3 first. The deconvolution layer upsamples
the feature map to the size of 512, which is the standard size in
the experiment. The second convolution layer functions feature
refining in the edge level. Each output of the edge blocks is the
one-dimensional feature maps and is supervised by the edge
labels.

3) Region-Level Feature Learning: The region-level feature
learning structure is inspired by the idea of scene classification,
which is able to eliminate the effect of background clutter
and noises, discerning the scene category. The whole structure
consists of four region-level blocks, depicted in Table II. Each
block owns three convolution layers, i.e., a partition layer
and two feature-refining layers. The partition layer has the
kernel size of 8 × 8, 4 × 4, 2 × 2, and 1 × 1 with the strides
of 8, 4, 2, and 1, respectively. The shared feature maps (with
the size of 256 × 256, 128 × 128, 64 × 64, and 32 × 32)
are resized into 32 × 32 through the partition layer, each unit
representing a local feature map with the size of 16 ×16. The
two feature-refining layers have the kernel size of 3 × 3 and
1 × 1, fusing the hierarchical features. The final outputs are
supervised by the region labels depicted by the red dotted lines
in Fig. 1.

4) Feature Fusion: The obtained three-level features reflect
the characteristics of the roads in the remote sensing images
from different perspectives. Therefore, feature fusions can
further make features of the roads more representative. The
feature fusion can be summarized as follows. First, we use
the deconvolution layer to expand the output in the region
level to the size of 512 × 512. Then, the stacked outputs

TABLE II

ENTIRE REGION-LEVEL FEATURE LEARNING PROCESS. “CONV” AND
“SOFTMAX” DENOTE THE CONVOLUTIONAL LAYER AND SOFTMAX

FUNCTION, RESPECTIVELY. THE PARTITION LAYER REDUCES

THE IMAGE SIZE BY THE KERNEL SIZE

AND STRIDE WITH NO PADDING

Fig. 2. Process of generating the connectivity labels. The left-hand-side cube
represents a road area in simplified form, where the green area denotes the
road pixels and the white area is the background. The cube on the right-hand
side is the connectivity labels generated by counting the road pixels with the
neighboring ones.

in the three levels are convolved by the kernel of 1 × 1 for
feature aggregation [55], [56] and sent to the direction-aware
attention block for topology enhancing.

B. Direction-Aware Attention Block

To extract better the topological information, we introduce
the direction-aware attention block to enhance the integrity
of the topological information. Specifically, we predict an
n-dimensional connectivity cube, where n is the number of
road directions and n = 8 as default. The method mainly
includes the following two steps.

1) Connectivity Labels: To predict the topological rela-
tionships, we first make the connectivity labels. Commonly,
the segmentation result is obtained by segmenting the probabil-
ity map σ (yi ) with t . Here, σ (∗) and t denote the sigmoid non-
linearity operation and the threshold parameter, respectively.
On the basis of the pixel labels, we exclude the background
information before building the connectivity labels, as shown
in Fig. 2. The left-hand-side cube represents a road area, where
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Fig. 3. Description of the proposed direction-aware attention block. A simplified crossroad is represented by the green grid. The direction block produces an
eight-dimensional feature map, each dimension representing the number of neighboring road pixels in a direction. The channelwise attention structure makes
the network pay more attention to the information of various directions. Finally, the output is summed up and supervised by the connectivity labels.

the green area denotes the road pixels and the white area
is the background. The cube on the right-hand side is the
connectivity labels generated by counting the road pixels with
the neighboring ones.

2) Channel Attention Mechanism: After the three levels of
feature learning, we convolute the features to C channels by
the kernel of 1 ×1. In our approach depicted in Fig. 3, C = 8
denotes the eight directions. Each channel represents the adja-
cency information in the corresponding direction. We describe
the input feature maps as f = [f1, f2, . . . , fc], where fi ∈ R

W×H

is the i th slice of f . After the average pooling operation,
the feature of each channel is obtained. Then, we use two
fully connected layers and a sigmoid activation function to
recalibrate the direction features. The final output is a vector
v ∈ R

C , and each element of the vector represents the weight
of the corresponding channel. Then, the weight vector is
applied to the unified feature map

x = F(f, v) (1)

where x ∈ R
W×H refers to the channelwise weighted feature

maps and F denotes a channelwise multiplication operation
between the feature maps and the weight vector v. The
final output, obtained by the sigmoid function on x, is
the probability of each pixel belonging to either the road or
the nonroad.

C. Optimization Method

The supervision of the three-level feature learning is per-
formed by optimizing the balanced cross-entropy loss. Since
the pixels belonging to the roads only occupy a small part
in the remote sensing images, the positive and negative ratios
are unbalanced. Thus, the native cross-entropy loss function

should pay more attention to the negative sample features. The
balanced cross-entropy loss [34] weights the loss according to
the number of corresponding pixels

L f = −β
∑
y∈y+

log Pr
(

Pj = 1
∣∣X, W, w

)
− (1 − β)

∑
y∈y−

log Pr
(

Pj = 0
∣∣X, W, w

)
(2)

where β = |y−|/|y| represents the class balancing weight,
which refers to the ratio of the number of negative samples to
the total number of pixels. |y|, |y+|, and |y−| refer to the total
number of pixels, number of positive pixels, and number of
negative pixels in image X, respectively. The class balancing
weight, Pr(·) ∈ [0,1], represents the probability of a pixel
belonging to a certain class, which is computed using the
softmax function on the feature maps.

In our topology-enhanced process, the problem to be solved
is approximately equivalent to a regression problem, since each
pixel needs to be assigned a value representing the number of
neighboring road pixels ranging from zero to eight. We address
this issue by optimizing the mean squared error (MSE)

L topo = 1

n

n∑
i=1

wi
(

yi
pred − yi

GT

)2
(3)

where n denotes the total number of elements in the connectiv-
ity cube and yi∗ indicates the connectivity value in position i .
The supervised process using the connectivity ground truth is
indicated in Figs. 1 and 3 with a blue dotted box.

Our method comprises a deep learning network with multi-
ple outputs at different levels. The network architecture resem-
bles that of a deeply supervised frame [54], which has been
proven to improve the convergence and generalization of the
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Fig. 4. Overview of the data set from several typical urban areas in Las Vegas, Paris, Shanghai, and Khartoum gathered from SpaceNet [9].

TABLE III

NUMBER OF TRAINING, VALIDATING, AND

TESTING SAMPLES FOR EACH CITY

deep networks [34], [35]. We minimize the following objec-
tive function via an adaptive moment-estimation algorithm
(Adam) [57]:

L = wt L topo +
M∑

m=1

wm L f (4)

where M refers to the total number of outputs supervised by
the three-level labels. wt and wm are the weights, and their
values are determined according to the loss during the training
process. After many epoch traversals, each loss function in the
network is well maintained between 0 and 1, so both wt and
wm are set to 1.0 by default. This default setting may cause
the parameters not in the best optimization state, and we will
study this issue in future work.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
method.

A. Data Set

The Road data set [9] in SpaceNet, as shown in Fig. 4,
is a publicly available benchmark for the high-resolution
remote sensing image. The images from four cities, i.e., Las
Vegas, Paris, Shanghai, and Khartoum, collected from the
WorldView-3 satellite are used to compare the methods. Each
image is in the size of 3000 × 3000 pixels, with the spatial
resolution of 30 cm, containing roads, various buildings,
vehicles, rivers, and vegetation in urban regions. Table III lists

Fig. 5. Visualization of the road labels with pixel level, edge level, and
region level. The columns display the training sample images from (a) Las
Vegas, (b) Paris, (c) Shanghai, and (d) Khartoum.

the number of training, validating, and testing samples for each
city.

The data set gives only the centerline labels in a vector for-
mat. To explore better the performance of different approaches,
we annotate the pixel labels with a width of 3 m to ensure the
label covers the majority of the road region. We outline the
pixel labels with 2 pixels as the edge pixels. The region labels
contain 32 × 32 units, each unit representing a local image
with a size of 16 × 16. The label of each unit depends on the
proportion of road pixels. We preset the proportion as 8% to
retain more road information. Fig. 5 shows some aerial images
with the corresponding labels.

B. Evaluation Methods

The intersection-over-union (IoU) metric mainly measures
the overlap between the predictions and the labels. The
F1-score is mainly used to evaluate the image segmentation
accuracy. Van Etten et al. [9] suggested that the two metrics
may not always reflect the road characteristics, because they
fail to consider the connectivity relationships among the roads.
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Fig. 6. Visual comparison of the urban road extraction results with different comparison algorithms. The figure is organized in four rows and seven columns.
The prediction results of (a) labels, (b) U-net, (c) U-net++, (d) Segnet, (e) ResUnet, (f) D-Linknet, and (g) our method are arranged in a row.

TABLE IV

QUANTITATIVE COMPARISON OF THE APLS INDICATOR (%)

To evaluate the performance of road semantic segmentation
and connectivity completeness, we adopt the following metrics
to compare our method with others.

1) Average Path Length Similarity (APLS) Metric: The
APLS metric [9] mainly measures the similarity between
the ground truth and the recognition results in terms of the
logical topology of the roads. The metric is calculated by the
following equation:

Mapls = 1 − 1

N

∑
k

min

{
1,

∣∣L(a, b) − L
(
a′, b′)∣∣

L(a, b)

}
. (5)

Here, N is the number of unique paths, L(·) is the length
between the two nodes, and k denotes all the possible source
and target nodes in each specific graph.

2) IoU: The IoU is the ratio between the intersection and
union parts of the segmentation results and ground truth.

TABLE V

QUANTITATIVE COMPARISON OF THE IOU INDICATOR (%)

The IoU is rewritten as follows:
IoU = GT ∩ DR

GT ∪ DR
(6)

where GT and DR denote the road pixels in the ground truth
and prediction results, respectively.

3) Confusion Matrix: Three metrics are also used in this
experiment: the precision (P), recall (R), and F-score (Fscore)
metrics. The precision denotes the proportion of the correctly
predicted pixels in all the positive cases. The recall represents
the proportion of the true-positive samples in the prediction
results. The Fscore is an overall metric that combines the
precision and recall metrics. They are defined as follows:

P = TP/(TP + FP) (7)

R = TP/(TP + FN) (8)

Fscore = 2P R/(P + R) (9)
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Fig. 7. Visualization of the convolutional layers and the final result of the pixel-, edge-, and region-level blocks. It is obvious that the edge-level features
preserve more high-frequency information, while the region-level features reflect the global information. (a) Block 1. (b) Block 2. (c) Block 3. (d) Block 4.
(e) Result.

Fig. 8. Output of the direction block. (Left subfigures) Labels of road area. (Middle subfigures) Output of the direction block displayed in the color
stripe, which contains eight values from 0 to 8, where pixels in zeros represent the background information and nonzero values indicate the road pixel.
(Right subfigures) Threshold output of the direction block.

where TP, FP, and FP denote the true-positive, false-positive,
and false-negative counts, respectively.

C. Implementation Details

The proposed model is implemented using Keras and opti-
mized through the Adam algorithm on an NVIDIA GeForce

GTX 1080 Ti GPU with 11 GB of onboard memory. We ran-
domly select 15% of the data set in each city from the
training data for validation. We use ImageNet [58] to pretrain
the model to help improving the convergence of the model
[58]. To speed up computation, the images are resized to
512 × 512 pixels and input to the model. We train the model
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TABLE VI

QUANTITATIVE COMPARISON OF THE PRECISION, RECALL, AND F1-SCORE METRICS

with a minibatch size of 3 due to the graphics memory limit,
and the learning rate is initially set to 1e−4 and reduced by a
factor of 0.05 in every ten epochs.

D. Comparisons of the Road Detection

We compare our method with five state-of-the-art road seg-
mentation methods: U-Net [26], U-Net++ [27], SegNet [2],
ResUnet [4], and D-LinkNet [5]. The performances of the six
approaches are listed in Tables IV–VI. It is noted that our
method performs better than the other four approaches in most
of the indicators in terms of both segmentation and topology.

In Fig. 6, we display the detection results of our proposed
approach and the other five approaches. Compared with the
five approaches, our method has the ability to extract the
subtle roads and keep the connectivity better. Especially, when
there are occlusions or shadows in the image, our method can
successfully segment the roads, while other methods fail to
obtain the roads in the occluded region.

E. Discussion

In this section, we further evaluate the effectiveness of the
proposed feature learning structure and the direction-aware
attention block.

1) Effectiveness of the Feature Learning Structure: We
choose the remote sensing images of Las Vegas as an example
to validate the effectiveness of the multiple feature learning at
the three levels. Feature visualization is an effective way to
explain the method. The visualization of each block in Fig. 1
is displayed in Fig. 7. The last column shows the final output
obtained by convolving the last layer to the one-dimensional
feature map by the kernel of 1 × 1 at each level, denoting
that the network has the ability to learn the features of
pixel level, edge level, and region level. We discover that the
edge-level features (the second row in Fig. 7) preserve more
high-frequency information that is reflected in the sharp edges
of the feature maps, while the region-level features (the third
row in Fig. 7) gather more global information that removes
the distraction of the background.

We compare our method to the ones with different combina-
tions among the pixel blocks, edge blocks, region blocks, and
direction blocks. As shown in Table VII, our method signifi-
cantly outperforms the compared ones, which demonstrate that
each part of our model contributes to the final results. Thus,
we conclude that the proposed feature extraction structure

TABLE VII

PERFORMANCE COMPARISON OF ROAD-DETECTION METHOD WITH

DIFFERENT CONFIGURATIONS OF THE PROPOSED NETWORK

Fig. 9. Outputs of direction block with different configurations. We can
find that the method is able to represent the road information more strongly
with the addition of edge-level and region-level feature excavation structures.
(a) Pixel only. (b) Pixel + Edge. (c) Pixel + Region. (d) Pixel + Edge +
Region.

consisting of pixel level, edge level, and region level can focus
on the interesting regions and learn the features of roads from
various geographical features.

2) Effectiveness of the Direction-Aware Attention Block:
To validate the effectiveness of the proposed direction-aware
attention block, we compare our model with the one in which
the direction block is replaced with a widely used fully
connected layer. As shown in Table VII, the method with
the direction block performs better in both the evaluation
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indicators. We visualize the output of the direction block,
as shown in Fig. 8. The middle subfigure depicts the output
of the direction block displayed in the color stripe, which
contains eight values from 0 to 8, where pixels in zeros
represent the background information and nonzero values
indicate the number of neighboring road pixels. The larger
pixel value denotes higher connectivity probability. It is noted
that the road detection is more accurate after fusing the
edge-level and region-level features. We find that some fragile
road sections are successfully connected as shown in Fig. 8,
denoting the direction block that contributes to the topological
relationship. Compared with other topology reconstruction
models, we adopt the direction block to enhance the topology
relationship, which is more concise in understanding and more
holistic in parameter optimizing.

To compare the performance of the direction block based
on different configurations, we display the visualization results
in Fig. 9 and the quantitative results in Table VII. We find that
the ability of the network to detect roads becomes stronger
with the addition of the feature excavation modules and the
direction-aware attention block.

V. CONCLUSION

In this article, we propose a novel end-to-end CNN-based
network that combines the pixel-, edge-, and region-level
road geographical features that are commonly recognized in
high-resolution remote sensing images to recognize the urban
roads as well as the direction-aware attention block to enhance
the topological relationship.

In the feature learning stage, the encoder part is shared
among the pixel, edge, and region levels so that the feature
maps are able to integrate the three levels to describe the
road simultaneously. Each level is learned by the cascaded
CNN-based blocks. In the topology-enhanced stage, we refor-
mulate the problem of binary segmentation into connectivity
prediction and introduce the attention mechanism to recal-
ibrate adaptively the features. The whole process is holis-
tically trained in an end-to-end manner. The experimental
results prove that our method performs better in segmenta-
tion and topology compared with the other state-of-the-art
road-detection approaches, especially in the connectivity and
integrity of the road areas. There exist some unsolved prob-
lems. The addition of edge level and region level introduces
more parameters to the whole network, although we adjust
the network structure to alleviate the problem. The MSE loss
function just computes the numerical regression, which ignores
the geographical features of the actual expression in the
direction-aware attention block. Roads apparently broken in
the images cannot be connected in prediction. Future work
will involve the solution of the abovementioned problems and
exploit this framework in more geography-related tasks.
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