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CoANet: Connectivity Attention Network for Road
Extraction from Satellite Imagery
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Abstract—Extracting roads from satellite imagery is a promis-
ing approach to update the dynamic changes of road networks
efficiently and timely. However, it is challenging due to the
occlusions caused by other objects and the complex traffic
environment, the pixel-based methods often generate fragmented
roads and fail to predict topological correctness. In this paper,
motivated by the road shapes and connections in the graph
network, we propose a connectivity attention network (CoANet)
to jointly learn the segmentation and pair-wise dependencies.
Since the strip convolution is more aligned with the shape of
roads, which are long-span, narrow, and distributed continuously.
We develop a strip convolution module (SCM) that leverages four
strip convolutions to capture long-range context information from
different directions and avoid interference from irrelevant re-
gions. Besides, considering the occlusions in road regions caused
by buildings and trees, a connectivity attention module (CoA)
is proposed to explore the relationship between neighboring
pixels. The CoA module incorporates the graphical information
and enables the connectivity of roads are better preserved.
Extensive experiments on the popular benchmarks (SpaceNet
and DeepGlobe datasets) demonstrate that our proposed CoANet
establishes new state-of-the-art results. The source code will be
made publicly available at: https://mmcheng.net/coanet/.

Index Terms—Road Extraction, Satellite Imagery, Connectivity
Attention, Strip Convolution, Topological Connectivity.

I. INTRODUCTION

CREATING road maps is a basic and essential step
in numerous application domains, such as autonomous

driving, urban planning, vehicle navigation, and geographic
information updating. The existing map collection methods
adopted by several mapping companies are usually time-
consuming, like extraction from LIDAR point clouds, aggre-
gation of GPS trajectories, or manual road labeling. These
methods are unsuitable for large-scale areas and insufficient
to update the dynamic changes of road networks in a rapidly
changing environment [1], [2]. Satellite imagery not only
represents the geometric characteristics of the roads but also
provides images from multiple periods and even real-time. To
accelerate the update process, extracting road networks from
satellite imagery [3]–[6] has become a promising approach.

Traditional studies focus on algorithms that utilize hand-
designed features and define certain criteria to extract roads
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Fig. 1: Motivation of the strip convolution module and the
connectivity attention module that we proposed. From left to
right: satellite imagery, ground truth. (a) Strip convolutions
with four shapes are used to capture linear features of roads.
(b) Connectivity of one pixel with neighboring pixels is
predicted to capture local pair-wise dependencies and ensure
road topological correctness.

from satellite imagery [7]–[11]. These methods are usually
inefficient when processing satellite imagery of large re-
gions. With the development of deep learning, convolutional
neural networks (CNNs), especially networks with fully-
convolutional network (FCN) [12] architecture, have been
proposed and proven to be effective in image semantic seg-
mentation [13]–[18]. Several works have applied CNNs with
encoder-decoder architecture to road segmentation tasks [19]–
[22], which often obtain good segmentation results. However,
extracting road from satellite imagery is challenging due to:
(a) occlusions by buildings and trees, (b) complex urban
environments and traffic, (c) similarities between the road and
other objects. These difficulties lead to fragmentation of the
road segmentation, and the above methods can not guarantee
the connectivity of roads. Recently, [1], [23]–[25] introduce

https://mmcheng.net/coanet/
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methods using segmentation followed by post-processing steps
to refine the missing connections, where the shortest path
algorithm is usually used as post-processing and it can not
apply to the intricate road environments. In order to directly
obtain the road with better connectivity, [5] adopts an iterative
search process to automatically extract the road network,
[26] utilizes U-Net combined with multiple loss functions to
iteratively refine the road delineation. Besides, Liu et al. [27]
integrate multi-level features including road surfaces, edges,
and centerlines to improve road prediction. However, these
methods are time-consuming and usually require complicated
steps to train.

In this paper, we propose a connectivity attention network
(CoANet) for road extraction from satellite imagery. We first
introduce an encoder-decoder architecture network to learn the
feature of roads, where the Atrous Spatial Pyramid Pooling
module (ASPP) is adopted to increase the receptive field of
feature points and capture multi-scale features. Since the roads
are long-span, narrow, and distributed continuously, the strip
convolutions are more aligned with the shapes of roads. We
take advantage of it and develop a strip convolution module
(SCM), which is placed in the decoder network. As shown
in Fig. 1 (a), the SCM leverages four strip convolutions with
horizontal, vertical, left diagonal, and right diagonal to capture
long-range context information from four different directions.
Besides, it prevents irrelevant regions from interfering with
feature learning. To alleviate occlusions in road regions caused
by buildings and trees, we propose a connectivity attention
module (CoA) to explore the relationship between neighboring
pixels. As illustrated in Fig. 1 (b), the connectivity of a given
pixel with eight neighboring pixels is predicted, which enables
the topological correctness of roads. Extensive experiments on
popular benchmarks in terms of pixel-based and graph-based
metrics demonstrate the superiority of our CoANet compared
with several state-of-the-art methods.

Our contributions are summarized as follows.

• We propose a connectivity attention network that jointly
learns the segmentation and relationship between neigh-
boring pixels to improve the connectivity of road, which
achieves significant improvements over other methods on
widely-used road datasets.

• We develop a strip convolution module that leverages
four strip convolutions with different directions to capture
long-range context information and avoid interference
from irrelevant regions.

• We design a connectivity attention module, which boosts
the road connectivity by exploiting dependencies between
pair-wise neighboring pixels and incorporating the graph-
ical information.

The remaining of this paper is organized as follows. Sec. II
summarizes the related works of road extraction and multi-
task learning. In Sec. III, we introduce the details of our
proposed CoANet. In Sec. IV, datasets, evaluation metrics, and
implementation details are provided, extensive experiments are
conducted to evaluate the performance of our method for road
extraction from satellite imagery. Conclusion and discussion
are presented in Sec. V.

II. RELATED WORK

A. Road Segmentation

Extracting road networks from satellite imagery has been
attempted by numerous studies. Traditional road extraction
methods usually utilize hand-designed features and define
certain criteria to match [28]–[30]. He et al. [11] present a
color-based road detection algorithm by combining the results
of boundaries estimation on the gray-level image and road-
area extraction on the color image. Zhang et al. [31] introduce
a number of descriptors of angular texture and identify the
road segments using a fuzzy logic classifier. Laptev et al. [8]
conduct road extraction based on multi-scale road detection,
which is combined with geometry-constrained edge extraction
utilizing snakes. [10] extracts road from remote sensing images
using a Gibbs point process framework. And [9] develops
junction-points processes to recover line-networks in both
aerial and retinal images. Wegner et al. [32] propose a higher-
order conditional random field (CRF) model for road network
extraction. However, these approaches are usually inefficient
and unsuitable for large-scale areas.

With the development of deep learning, CNNs with encoder-
decoder architecture [12], [14], [16], [33]–[37] have been
proposed and proven to be effective in semantic segmentation.
Some studies [20], [22], [38]–[40] formulate the road extrac-
tion as a segmentation problem using CNN-based models.
Mnih et al. [19] detect roads by using a neural network imple-
mented on a graphics process. Cheng et al. [20] propose a cas-
caded end-to-end CNN (CasNet) to simultaneously process the
road segmentation and centerline extraction tasks from very
high resolution (VHR) remote sensing images. Panboonyuen
et al. [21] present a DCNN framework for road segmentation,
then landscape metric is proposed to reduce misclassified road
pixels and CRF is adopted to sharpen the extracted roads.
U-Net [13] and LinkNet [15] are the well-admired encoder-
decoder structures for semantic segmentation, their variants are
also proposed to learn thin and elongated road features. Zhang
et al. [22] propose a semantic segmentation neural network
called ResUnet, which is combined with residual learning and
U-Net for road area extraction. In the CVPR DeepGlobe 2018
Road Extraction Challenge [41], Zhou et al. [39] propose a D-
LinkNet, which is built with LinkNet [15] structure and added
dilated convolution layers in the center part. These methods
usually obtain good road segmentation results, but they can
not guarantee the connectivity of roads.

B. Road Connectivity

Road connectivity is one of the most important road fea-
tures, which is necessary for vehicle navigation, autonomous
driving, and routing. Recently, researchers have paid more
and more attention to this characteristic and proposed several
methods. Wegner et al. [23] first segment aerial images into
superpixels, and the candidate paths with high road likelihood
are connected using the shortest path algorithm. Máttyus et
al. [1] obtain an initial segmentation of the aerial images
using the model with an encoder-decoder structure. Since the
segmentation results fail to predict connected roads, they then
introduce a post-processing step by reasoning about missing
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connections with the shortest path algorithm. In these methods,
road connectivity is achieved with post-processing, which
is not suitable for complex environments like regions with
occlusions, ambiguous road appearance, and high road density.

In order to directly obtain the road extraction results
with better connectivity, Mosinska et al. [26] utilize U-Net
combined with pixel-wise loss and topology-aware loss to
iteratively refine the road delineation. Bastani et al. [5] propose
RoadTracer that uses an iterative search process guided by
a CNN-based decision function to automatically extract the
road networks from aerial images. Batra et al. [6] propose
a stacked multi-branch module to effectively utilize mutual
information between segmentation and orientation learning
tasks. They also develop a connectivity refinement approach to
iteratively refine the topology of the predicted road networks.
However, the iterative steps are time-consuming and these
methods usually take a long time to train.

There are some studies that integrate multi-level road fea-
tures or other geographical data to obtain connected road
extraction results. RoadNet is proposed by Liu et al. [27] to
simultaneously predict road surfaces, edges, and centerlines,
where multilevel features are integrated to deal with the roads
in various scenes and improve road prediction. Li et al. [42]
develop a novel framework to effectively integrate the road
shape features including point, edge, and area characteristics.
Then a direction-aware attention module is introduced to
further improve the road connectivity and road-recognition ac-
curacy. The Light Detection and Ranging (LiDAR) data [43]–
[45] and GPS trajectories [46]–[50] have also been used to
infer road maps. [51] combines crowdsourced GPS data with
aerial imagery to extract road, and experiments show that their
results outperform the models using GPS data or images alone.
The LiDAR and GPS data may be useful to improve road
connectivity, especially in areas with occlusions. However,
it is challenging to collect enough data of LiDAR and GPS
covering a large region, and the preprocessing of these data is
often complicated.

C. Pair-Wise Dependencies

In the task of semantic segmentation, some studies have
designed modules that aggregate the contextual information to
improve performance. Shen et al. [52] propose a joint objective
to integrate segmentation features, high-order context, and
boundary guidance, where a guidance CRF is adopted to
further improve the segmentation performance. Dai et al. [53]
introduce a deformable convolution and a deformable RoI
pooling to enhance the transformable modeling capability of
CNNs, which is a simple and efficient method to model
dense spatial transformations. To capture long-range depen-
dencies, [54] proposes the non-local block that computes
contextual responses based on relationships between different
positions, while it requires high computation cost. Criss-cross
network [55] is developed to obtain the contextual information
of all pixels on the criss-cross path, which is more efficient.
A pyramid attention module is proposed in [56] to enhance
saliency representations by utilizing multi-scale feature learn-
ing and an enlarged receptive field. Wang et al. [57] propose

a pixel-wise contrastive method for semantic segmentation,
which learns a well-structured pixel semantic embedding space
by leveraging the global context among pixels across different
images.

The idea of our connectivity attention module is also related
to the methods that learn the pixel affinity in semantic segmen-
tation. Bertasius et al. [58] introduce a convolutional random
walk network to integrate semantic segmentation and pixel-
wise affinity, which addresses the problems of poor bound-
ary localization and spatially fragmented segments. Cheng
et al. [59] design a locality-sensitive DeconvNet, where an
affinity matrix is adopted to learn relations among neighboring
pixels. AffinityNet is proposed in [60] to predict high-level
semantic affinities between pairs of adjacent image coordi-
nates. Hou et al. [61] develop a novel inter-region affinity
knowledge distillation approach for the task of road marking
segmentation. The above methods aim to recover object
shape or refine outputs of semantic segmentation models,
which usually establish the semantic affinity in a fixed field.
However, our method improves the connectivity of roads by
exploiting pair-wise affinity between multi-scale neighboring
pixels. Besides, the direction and position of pixel sampling
are specific, which are consistent with the distribution of most
roads in the satellite imagery.

When annotating the road in satellite imagery, the human
need to recognize whether a pixel belongs to road and con-
nect road pixels considering the importance of correct road
topology. Inspired by the context aggregation and pixel affinity
learning in semantic segmentation, we propose a connectivity
attention module to capture pair-wise dependencies among
neighboring pixels. The module is able to improve the con-
nectivity of roads, which is shown in our experiments based
on pixel-based and graph-based metrics.

III. METHOD

Road connectivity is an important road characteristic, while
segmentation based methods often produce fragmented roads.
To alleviate this problem, we develop a connectivity attention
network (CoANet) for road extraction from satellite imagery,
as shown in Fig. 2. In CoANet, a strip convolution module
(SCM) is proposed to align with the shape of the road and
extract its linear feature. And we further propose a connec-
tivity attention module (CoA) to predict the road connectivity
between neighboring pixels.

A. Network Structure

Encoder-Decoder Architecture. In CoANet, we employ
ResNet-101 [62] pre-trained on ImageNet [63] as the encoder
because of its outstanding performance in feature learning.
Since the atrous convolution is a powerful tool in controlling
the filter’s field-of-view and adjusting the resolution of feature
maps, like [16], we apply atrous convolution with rate r = 2
and r = 4 to the last two convolution blocks in ResNet-101
for denser feature extraction.

To effectively learn features at multiple scales, the Atrous
Spatial Pyramid Pooling module (ASPP) in [18] is adopted.
Since the roads are narrow, complex, and long-span, the use
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Fig. 2: Overall architecture of the proposed connectivity attention network (CoANet). The encoder module contains five
convolution blocks. The ASPP is the Atrous Spatial Pyramid Pooling module, which learns multi-scale features by applying
atrous convolution with multiple scales. And the decoder module includes four strip convolution blocks. d denotes the interval
of a given pixel with its neighboring pixels.

of ASPP will increase the receptive field of feature points
and improve the connectivity of roads. The decoder module
contains four strip convolution blocks for up-sampling the
feature maps to an appropriate size and extracting linear fea-
tures of the roads. Each strip convolution block contains four
strip convolutions with different directions to capture long-
range context information, including horizontal, vertical, left
diagonal, and right diagonal. Besides, each output feature map
of strip convolution blocks is adjusted by a 1×1 convolution,
which is then concatenated with the corresponding feature map
of convolution blocks in the encoder.

Loss Function. There are two branches after the decoder
module: the segmentation branch and the connectivity branch.
The connectivity branch corresponds to the connectivity atten-
tion module we developed, where the connectivity of a given
pixel with eight neighboring pixels is predicted to incorporate
the graphical information and guarantee the topological cor-
rectness of roads. As for the segmentation branch, it contains
a 3 × 3 convolution and a 1 × 1 convolution for reducing
the number of channels to one. The loss function of the
segmentation branch is defined as:

Lseg = LBCE + α(1− LDice), (1)

where LBCE is binary cross entropy, and LDice is the Dice

coefficient, which are defined as:

LBCE = − 1

N

N∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)], (2)

LDice =
2
∑N

i=1(yiŷi)∑N
i=1 y

2
i +

∑N
i=1 ŷi

2
, (3)

where α is a constant. N indicates the number of elements
in a H × W slice, yi is the ground truth denoting road
or background for a given pixel in position i, and ŷi is
the corresponding predicted probability of the segmentation
branch.

B. Strip Convolution Module

The convolutions in most CNN architectures often have
square kernels and learn the feature map within square win-
dows, which is suitable for most natural objects with bulk
shape. However, the roads are long-span, narrow, and dis-
tributed continuously. Taking advantage of square convolution
can not capture the linear features of roads well, and it would
inevitably incorporate irrelevant information from neighboring
pixels. The strip convolution is more aligned with the shape
of roads, which utilizes a long kernel shape along one spatial
direction to capture long-range dependencies in road regions.
Besides, it captures local context along the other spatial
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Fig. 3: The strip convolution block. The strip convolutions
contain four different shapes: horizontal, vertical, left diagonal,
and right diagonal.

direction and prevents irrelevant regions from interfering the
feature learning.

Motivated by the above fact and the 1D transpose convo-
lution in [51], we propose a novel strip convolution module
(SCM). As shown in Fig. 3, SCM leverages four strip convolu-
tions with horizontal, vertical, left diagonal, and right diagonal
to capture long-range context information from four different
directions. Let X ∈ RH×W×C denote the input tensor for
the SCM, Where H , W , and C represent the height, width,
and the number of channels. In the strip convolution block, X
is fed into four parallel pathways after a 1 × 1 convolution,
each of which contains a strip convolution with one shape.
Then the output feature maps of four strip convolutions are
concatenated, which is followed by an up-sampling operation
and a 1 × 1 convolution to obtain the output of the strip
convolution block.

Let w ∈ R2k+1 be the strip convolution filter with size
2k+1, D = (Dh, Dw) is the direction of filter w, and ZD ∈
RH×W×C′

denotes the result of strip convolution. The strip
convolution can be defined as:

ZD[i, j] = (X ∗w)D[i, j]

=

k∑
l=−k

x[i+Dhl, j +Dwl] · w[k − l],
(4)

where X ∗ w denotes the convolution operation. D is
the direction vector of the strip convolution, which is
(0, 1), (1, 0), (1, 1), and (−1, 1) for convolutions of horizontal,
vertical, left diagonal, and right diagonal, respectively. For
filter w, we set k = 4 to make each strip convolution have 9
parameters, which is the same as a 3× 3 convolution filter.

In the above SCM, each position in the output feature map is
allowed to establish relationships with multiple positions from
four directions in the input feature map. The four directions
we chose are aligned with the distributions of most roads in
the satellite imagery and are relatively easy to implement.
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Fig. 4: (a) Illustration of how the connectivity cube is gen-
erated, the interval between sampled pixels d = 1. In the
road image, the white pixels denote the background and the
blue pixels are road. In the connectivity cube, all pixels have
binary values, where 1 denotes the pixel is connected with a
neighboring pixel in one direction and 0 is for not-connected
pixels. (b) The connectivity attention module (CoA).

C. Connectivity Attention Module

Extracting roads from satellite imagery is challenging due
to the occlusions caused by buildings and trees, which would
interfere with road connectivity. To alleviate this problem,
we develop a connectivity attention module (CoA) to effec-
tively predict road connectivity between neighboring pixels
and disentangle the background regions. The CoA is able
to explore the relationship between pairs of pixels, which is
seamlessly combined with the feature learning process. This
module enables our model to integrate information that is
usually learned in the graphical models and leads to better
connectivity of roads.
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Taking advantage of the binary ground truth mask, we first
generate the ground truth connectivity cube O ∈ RH×W×Co ,
where Co denotes the number of sampled neighboring pixels
for a given pixel and we set Co = 8. In the connectivity
cube, Oi,j,c indicates the connectivity of a pixel with the
neighboring pixel at a specific position, where i, j denote the
spatial position of the pixel and c denotes the position of its
neighboring pixel. Oi,j,c = 1 if the two pixels are connected,
which means both of them are road pixels. And the background
pixels are not connected to reduce the irrelevant noise. For
the neighboring pixels, we select the pixels with an interval
of d = 1 from the given pixel. As shown in Fig. 4 (a),
the pixels at positions C1 − C8 are chosen as neighboring
pixels. By checking if each pixel with its neighboring pixel
at the specific position is connected and concatenating the
connectivity masks at positions C1 − C8, we can obtain the
ground truth connectivity cube O.

In our CoA module, as shown in Fig. 4 (b), the input
tensor is fed into a 3 × 3 convolution, which is followed
by a 3 × 3 atrous convolution with rate r = d. The atrous
convolution is used to increase the receptive field and learn
the relations between neighboring pixels. Then the Squeeze-
Excitation (SE) block in [64] is adopted to fully exploit the
connectivity, which re-calibrates the predicted connectivity
cube by using the channel attention mechanism. The SE block
contains two fully connected layers and a sigmoid function.
The input feature map is fed into this block after a global
average pooling and we can obtain a vector ranging (0, 1),
where each factor is multiplied by the corresponding channel
in the input feature map. The final output of the CoA module
is a H×W ×Co connectivity cube to predict the connectivity
between neighboring pixels.

The connectivity branch in our proposed CoANet consists
of two connectivity attention modules, one of which is the
module described above with d = 1 and the other is the
module with d = 3. As for the CoA module with d = 3, the
interval of a given pixel with its neighboring pixels is set to 3
and the rate of 3×3 atrous convolution in the CoA module is
set to r = 3. The two CoA modules with different settings are
adopted to capture multi-scale connectivity information and
improve the connectivity of predicted roads. We will provide
more analysis in the experiments on the performance of our
approach with different configurations of the CoA module.

The loss function of the connectivity branch is defined as:

Lcon = Ld1 + βLd3, (5)

Ld1 = − 1

Co ×N

Co∑
c=1

N∑
i=1

[yci · log(ŷci )+(1−yci ) · log(1− ŷci )],

(6)
where β is a constant. Co represents the number of sampled
neighboring pixels for a given pixel, and N is the number
of elements in a H × W slice. yci is the ground truth
denoting connectivity or non-connectivity for a given pixel
in position i with its neighboring pixel in position c, and ŷci
is the corresponding predicted connectivity of the connectivity
branch. The loss function Ld3 is the same as Ld1.

The overall loss function can be defined as:

LCoANet = Lseg + λLcon, (7)

where λ is a constant.

IV. EXPERIMENTS

In this section, we introduce the two datasets and evaluation
metrics used in our experiments. Besides, detailed evaluation
results in both quantitative and qualitative are presented.

A. Datasets

Two datasets are used in our experiments to evaluate the
performance of the proposed method.

SpaceNet [65]: This dataset provides 30cm/pixel imagery
with a pixel resolution of 1300 × 1300 from four different
cities: Paris, Las Vegas, Shanghai, and Khartoum. The an-
notations of road are provided in the form of line-string that
indicating the centerline of road. The dataset consists of 2,780
images, which are split into 2,213 images for training and 567
images for testing following [66]. We augment the training
dataset by creating crops of 650 × 650.

DeepGlobe [41]: This dataset includes 50cm/pixel imagery
with a pixel resolution of 1024 × 1024. The images are
collected from three different regions: Thailand, Indonesia,
and India. It provides pixel-level annotation, including road
and background classes. The dataset contains 6,226 images,
following [66], we split it into 4,696 images for training and
1,530 for testing. The training dataset is augmented by creating
crops of 512 × 512.

B. Evaluation Metrics

Pixel-Based Metrics. To evaluate the performance of our
method for road segmentation, we use F1-score and Intersec-
tion over Union (IoU) metrics. Since the annotations of the
SpaceNet dataset are provided in the form of line-string, we
obtain the ground truth for road segmentation by rasterizing
the line-string with constant width. The buffer of road center-
line is set to 3 meters (10 pixels) in our experiments.

Graph-Based Metric. The Average Path Length Similarity
(APLS) [65] is used in our experiments to evaluate topolog-
ical correctness and connectivity of roads. The APLS metric
measures the differences in optimal path lengths between all
pair of nodes in the ground truth graph G and the proposed
graph Ĝ, which is defined as:

APLS = 1− 1

n

∑
min

1,

∣∣∣L(a, b)− L(â, b̂)∣∣∣
L(a, b)

 (8)

where â, b̂ are the nodes in the predicted graph Ĝ nearest the
location of nodes a, b in the ground truth graph G, respec-
tively. L(â, b̂) and L(a, b) denote the path length between the
corresponding nodes in graphs Ĝ and G, respectively. n is the
number of unique paths.
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TABLE I: Quantitative comparison of our proposed CoANet
with some state-of-the-art road extraction methods on the
SpaceNet dataset (%). CoANet-UB denotes the upper bound
for our CoANet with the ground truth of connectivity branch.

F1 IoU APLS

DeepRoadMapper [1] ICCV 17 71.47 55.61 46.76
Topology Loss [26] CV PR18 58.44 41.29 39.08
LinkNet34 [15] V CIP17 73.96 58.68 63.12
D-LinkNet [39] CV PRW18 69.77 53.57 50.20
RoadCNN [5] CV PR18 73.74 58.40 59.39
ImprovedConnectivity [6] CV PR19 75.91 61.17 62.81
VecRoad [69] CV PR20 63.63 46.65 61.64
CoANet 76.91 62.48 65.53
CoANet-UB 85.54 74.73 76.98

C. Implementation Details

In our CoANet, the Stochastic Gradient Descent (SGD)
optimizer is used with a batch size of 16. The momentum
and weight decay coefficients are set to 0.9 and 5 × 10−4,
respectively. The learning rate is initially set to 0.01 and we
adopt the ‘poly’ policy to gradually reduce the learning rate,
where the learning rate is multiplied by (1 − iter

maxiter )
power

with power = 3. And our method is performed using the
machine learning framework PyTorch [67], the experiments
are implemented on 4 NVIDIA RTX TITAN GPUs with
24GB memory. Both PyTorch [67] and Jittor [68] versions
of the source code will be made publicly available. During
training, the data augmentation including random rotation,
horizontal flipping, rescaling, and gaussian blurring are applied
to improve the generalization of the model. Finally, the images
are cropped to a fixed size of 512× 512 for both datasets.

In the inference phase, we utilize the predictions of connec-
tivity branch to enhance the results of road extraction. There
are eight channels in the output of the connectivity attention
module, where the prediction of each channel can be regarded
as a sub-problem of the segmentation task. For example, given
the predicted connectivity cube O, if σ(Oi,j,c) > t, the pixel
in location (i, j) is connected to its neighboring pixel in
position c and both of them are road pixels. σ() is a sigmoid
nonlinearity function and t is a threshold value. We estimate
each channel of O and sum it up along the channel dimension,
then we can get a one-dimensional road mask. It is added to
the output of the segmentation branch to get the final road
extraction results.

D. Comparison with State-of-the-art Methods

In this section, we compare the performance of our CoANet
with several state-of-the-art road extraction methods on the
SpaceNet and DeepGlobe datasets, including DeepRoadMap-
per [1], Topology Loss [26], LinkNet34 [15], D-LinkNet [39],
RoadCNN [5], ImprovedConnectivity [6], and VecRoad [69].
In these methods, DeepRoadMapper [1] and ImprovedConnec-
tivity [6] utilize post-processing steps to improve the connec-
tivity of the road, while the other methods directly generate
the extraction results.

TABLE II: Quantitative comparison of our proposed CoANet
with some state-of-the-art road extraction methods on the
DeepGlobe dataset (%). CoANet-UB denotes the upper bound
for our CoANet with the ground truth of connectivity branch.

F1 IoU APLS

DeepRoadMapper [1] ICCV 17 78.04 63.98 58.85
Topology Loss [26] CV PR18 56.07 38.95 46.99
LinkNet34 [15] V CIP17 79.65 66.18 72.93
D-LinkNet [39] CV PRW18 77.49 63.26 71.81
RoadCNN [5] CV PR18 79.08 65.40 71.15
ImprovedConnectivity [6] CV PR19 79.93 66.58 71.69
CoANet 81.22 68.37 73.48
CoANet-UB 89.25 80.58 85.14

TABLE III: Ablation study (%) for the proposed Strip Con-
volution Module (SCM) and Connectivity Attention Module
(CoA). The baseline is the segmentation model based on
ResNet-101 (No. 1). We add the SCM module and the CoA
module to show the effectiveness of them (No. 2 and No. 3).
No. 4 is the complete version of our proposed CoANet.

SpaceNet DeepGlobe
No. SCM CoA IoU APLS IoU APLS

1 59.57 58.69 63.09 69.13
2 4 61.84 63.93 63.89 70.09
3 4 61.10 61.27 64.32 70.45
4 4 4 62.48 65.53 68.37 73.48

Experiments on the SpaceNet Dataset. The quantitative
experiment results on the SpaceNet dataset are listed in Table I.
It is noted that our CoANet outperforms other methods in
terms of pixel-based and graph-based metrics. For example,
CoANet obtains an F1 score of 76.91% and an IoU score
of 62.48%, which are better than ImprovedConnectivity [6]
by 1.00% and 1.31%, respectively. As for the APLS, which
is used to evaluate the topological correctness of roads, our
method improves the second-best method LinkNet34 [15]
by 2.41%. Since our proposed CoANet integrates the seg-
mentation and relationship between neighboring pixels into
one framework, it can extract roads with higher accuracy
from satellite imagery. What’s more, the use of connectivity
attention module can further improve the topological connec-
tivity of the road. We also compare a graph-based method
VecRoad [69], which introduces an iterative graph exploration
model with flexible steps. Our method obtains improvements
of 15.83% on the IoU score and 3.89% on the APLS score.
The graph-based methods usually guarantee the connectivity
of the extracted roads, but there may be a large number of
missing roads. Therefore our CoANet also has advantages
over the graph-based methods. Besides, we devise an upper
bound to our proposed method CoANet by using the ground
truth of connectivity branch during inference. The upper bound
results indicate that there is still large room for the connectivity
branch to improve, and one possibility is to use a larger pixel
interval in the future work.

SpaceNet [65] is a dataset where the remote sensing images
are mainly collected from the urban areas, which contains a
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Fig. 5: Qualitative comparison of our CoANet with other state-of-the-art methods. Green: true positive, red: false positive,
blue: false negative. The first to the fourth rows show the comparison results with different cities of SpaceNet [65], including
Las Vegas, Paris, Shanghai, and Khartoum. The fifth to the eighth rows show the comparison results of DeepGlobe [41]. (a)
Satellite imagery. (b) Ground truth. (c)-(i) Road extraction results of DeepRoadMapper [1], Topology Loss [26], LinkNet34 [15],
D-LinkNet [39], RoadCNN [5], ImprovedConnectivity [6], and our CoANet.

variety of road types in the city, such as motorway, residential,
and highway, etc. There are also occlusions by buildings,
shadows of buildings, and trees. Our method achieves the best
results on pixel-based and graph-based metrics, which shows
that the CoANet is able to deal with the complex urban traffic
environment and extract roads with better connectivity.

Experiments on the DeepGlobe Dataset. Table II shows
the quantitative results of our proposed CoANet compared
with previous state-of-the-art methods on the DeepGlobe
dataset. Since the VecRoad [69] needs the ground truth
of road line string but DeepGlobe only has the pixel-level
annotations, we do not show the experiment results of Ve-
cRoad. Our CoANet achieves an IoU score of 68.37%, which

is better than other methods and improves the second-best
method ImprovedConnectivity [6] by 1.79%. Besides, CoANet
also obtains the best APLS score, which outperforms the
LinkNet34 [15] by 0.55% and D-LinkNet [39] by 1.67%.

The remote sensing images in DeepGlobe [41] are mainly
gathered from rural areas. It contains a large number of country
roads, and the width of roads is constantly changing, which
means that a road may have different widths. And there are
severe occlusions caused by trees and shadows of trees. The
experiment results show that our CoANet is also effective for
the roads in rural areas. Combined with the results on the
SpaceNet [65] dataset, it shows that our proposed method is
robust to different road types in different regions.
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Fig. 6: Visual results of the proposed method under different
model configurations. Green: true positive, red: false positive,
blue: false negative. The first to the third columns show three
samples from SpaceNet [65] and DeepGlobe [41]. (a) Ground
truth. (b) Baseline. (c) Baseline + SCM. (d) Baseline + CoA.
(e) CoANet contains only one CoA module with d = 1. (f)
CoANet contains three CoA modules. (g) CoANet.

Qualitative Comparison. The qualitative comparison re-
sults of our CoANet and other methods are illustrated in
Fig. 5, which show four examples from different cities of
SpaceNet [65] and four examples of DeepGlobe [41]. It is
noted that the extracted roads of our method are consistent

TABLE IV: Ablation study (%) for the proposed Connec-
tivity Attention Module (CoA). CoANet-Affinity denotes the
CoANet that the proposed connectivity attention module is
replaced with the affinity module in [60].

SpaceNet DeepGlobe
IoU APLS IoU APLS

CoANet-Affinity 61.93 62.67 62.43 69.54
CoANet 62.48 65.53 68.37 73.48

TABLE V: Ablation study (%) for the proposed Connectivity
Attention Module (CoA) with different configurations. d1, d3,
and d5 denote the CoA modules with d = 1, d = 3, and d = 5,
respectively. No. 1 is the proposed CoANet that contains only
one CoA module with d = 1. No. 2 represents the complete
version of our method. And No. 3 denotes the connectivity
branch consists of three CoA modules.

SpaceNet DeepGlobe
No. d1 d3 d5 IoU APLS IoU APLS

1 4 62.04 64.87 64.39 70.50
2 4 4 62.48 65.53 68.37 73.48
3 4 4 4 62.09 65.13 64.89 70.83

with those of ground truth and exist very few false positive
pixels. In some regions where occlusions exist, the roads
extracted by other methods may be disconnected, while our
CoANet maintains the connectivity very well. For example,
in the results of Las Vegas (the first row in Fig. 5), there
is a parking lot in the lower-left corner of the image, where
is parked a lot of vehicles and planted several trees. The
roads extracted by DeepRoadMapper [1], Topology Loss [26],
LinkNet34 [15], and ImprovedConnectivity [6] have many
defects and fail to preserve the connectivity, but the result
obtained by CoANet is consistent with the ground truth. In
the results from DeepGlobe (eighth row in Fig. 5), where
the roads are from rural areas and exist severe occlusions
caused by trees. The roads extracted by other approaches have
poor connectivity compared with our method. These visualized
results verify the superiority of our CoANet in the task of road
extraction from satellite imagery.

E. Ablation Study

Effectiveness of Our Proposed Modules. In the CoANet
model, SCM and CoA modules are proposed to capture the
long-range relations in road regions and explore the dependen-
cies between neighboring pixels, respectively. To validate the
effectiveness of the two modules, we conduct experiments with
different configurations, as shown in Table III. The baseline
(No. 1) is the FCN model based on ResNet-101, when we add
our proposed SCM and CoA to the baseline, the performance
in terms of the IoU score increase from 59.57% to 61.84%
and 61.10% on the SpaceNet dataset. As for the APLS score
on the SpaceNet, adding SCM and CoA improve the baseline
by 5.24% and 2.58%. After combining the SCM and CoA, we
achieve a 2.91% improvement on the IoU score and a 6.84%
improvement on the APLS score. The experiment performance
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TABLE VI: Ablation study (%) for the proposed Strip Convo-
lution Module (SCM) with different configurations.‘H’, ‘V’,
‘L’, and ‘R’ denote the four strip convolutions with different
shapes: horizontal, vertical, left diagonal, and right diagonal,
respectively. Specially, No. 1 is the SCM that contains two
strip convolutions: horizontal and vertical. No. 4 represents
the complete version of our method. No. 5 denotes that the
SCM contains two convolutions for each shape and has a total
of eight convolutions.

SpaceNet DeepGlobe
No. SCM IoU APLS IoU APLS

1 H&V 61.85 64.58 64.57 70.65
2 H&V&L 62.01 65.01 64.69 70.92
3 H&V&R 61.93 64.85 64.97 70.74
4 H&V&L&R 62.48 65.53 68.37 73.48
5 2×H&V&L&R 61.98 65.41 65.19 71.03

(a) (b) (c)

Fig. 7: Visualization of some cases that our CoANet fails.
Green: true positive, red: false positive, blue: false negative.
The first row is satellite imagery, the second row is road
extraction results of our CoANet. (a)-(b) Three samples from
SpaceNet [65] and DeepGlobe [41].

on the DeepGlobe dataset is also improved by adding the two
modules. These results verify that our proposed two modules
are effective for road extraction.

The qualitative results of our method under different settings
are illustrated in Fig. 6. There are some broken road segments
in the results of the baseline, especially in the regions occluded
by trees. After adding the CoA module, most broken segments
in the baseline are connected, while the edges of the roads
are coarse and there are some discrete points identified as
roads. The SCM module helps improve the connectivity and
the roads extracted are smoother. However, since the SCM
is developed to capture long-range dependencies, some areas
that are other classes may be recognized as roads and it makes
the road longer than it actually is. It is noted that there are
some disadvantages if we use the two modules separately.
The SCM module connects the broken road segments where
the neighboring pixels in the CoA module can not reach,
and the CoA module can prevent the irrelevant noise from

TABLE VII: Running time of our proposed CoANet and
some state-of-the-art road extraction methods under the same
conditions. We list the training time for images of an identical
batch size and inference time for one image (s).

Training Inference

DeepRoadMapper [1] ICCV 17 0.579 0.121
Topology Loss [26] CV PR18 0.168 0.049
LinkNet34 [15] V CIP17 0.201 0.066
D-LinkNet [39] CV PRW18 0.218 0.071
RoadCNN [5] CV PR18 0.156 0.028
ImprovedConnectivity [6] CV PR19 0.361 0.074
CoANet 0.146 0.022

the background. Therefore, our CoANet obtains the best road
extraction results by combining the two modules.

To verify the effectiveness of our connectivity attention
module on the task of road extraction, we also compare it with
the module that learns the pixel affinity. In [60], AffinityNet
is developed to learn class-agnostic semantic affinity between
a pair of adjacent coordinates on an image, which is similar
to our CoA module. We replace the proposed CoA module
with the AffinityNet module in [60], and the experimental
results are shown in Table IV. The performance of our CoANet
is better than CoANet-Affinity by 5.94% on the IoU score
and 3.94% on the APLS score for the DeepGlobe dataset.
The AffinityNet in [60] assigns the affinity label of two
adjacent coordinates to 1 if their classes are the same, and the
coordinate pairs are sampled within a small radius. However,
our CoA module explores the connectivity between neigh-
boring road pixels and disentangle the background regions.
And the neighboring pixels are sampled from eight specific
directions around, where the directions are consistent with the
distribution of most roads in the satellite imagery. There are
two different settings for the interval between sampled pixels
in our CoA module and it can capture multi-scale connectivity
information, while the sampling radius in AffinityNet [60] is
fixed. These advantages make our CoA module achieve better
performance on the task of road extraction.

Effect of Different Configurations for CoA. As described
in Sec. III-C, the connectivity branch in our proposed CoANet
contains two CoA modules, one of which is d = 1 and another
is d = 3. Here we analyze the effect of different configurations
for the CoA module in the connectivity branch, the results
are listed in Table V. We define that CoANet-d1 denotes our
proposed CoANet contains only one CoA module with d = 1,
CoANet-d5 represents that our CoANet consists of three CoA
modules with d = 1, d = 3, and d = 5. CoANet-d1 obtains
62.04% in terms of the IoU score and 64.87% in terms of the
APLS score on SpaceNet [65]. After adding a CoA module
with d = 3, the performance is improved to 62.48% on the
IoU score and 65.53 on the APLS score. However, if the
CoANet consists of three CoA modules (No. 3 in Fig. V), its
performance is higher than CoANet-d1 (No. 1) but lower than
our CoANet that with two CoA modules (No. 2). The reason
can be analyzed from the visualization results. As shown in
Fig. 6, there are still some broken road segments in the results
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of CoANet-d1. Besides, since the intervals of a given pixel
with its neighboring pixels are bigger, the road extraction
results of CoANet-d5 contain more background areas and are
much longer. Therefore we select the configuration with two
CoA modules, it obtains results that are more consistent with
the ground truth.

Effect of Different Configurations for SCM. As shown in
Table VI, we analyze the influence of different configurations
for SCM in the decoder. When SCM contains horizontal and
vertical strip convolutions, it obtains 61.85% on the IoU score
and 64.58% on the APLS score for the SpaceNet dataset. The
performance is improved by adding a type of strip convolution,
like No. 2 and No. 3 in Table VI. After adding left diagonal
and right diagonal strip convolutions, our CoANet achieves
62.48% on the IoU score and 65.53% on the APLS score. The
above experimental results are in line with our expectations.
With four strip convolutions of different shapes, our method
can capture local context along with multiple spatial directions.
It is noted that the four directions are consistent with most
roads in satellite images and are relatively easy to implement.
We also report results of the configuration that SCM contains
two convolutions for each shape and has a total of eight
convolutions. As listed in No. 5, it harms the improvement
of performance and increases the computational cost due to
the additional strip convolutions. Thus, we apply four strip
convolutions in the SCM.

F. Discussion

Analysis of Failure Cases. As mentioned in the above
experiments, our proposed CoANet achieves new state-of-the-
art performance on two public datasets SpaceNet [65] and
DeepGlobe [41]. However, there are still some failure cases
for our approach. As illustrated in Fig. 7, we show three
samples from the two datasets. For Fig. 7 (a), there are a tunnel
and an overpass in the middle of the satellite image. Besides,
there are server occlusions in road regions caused by trees and
buildings, as shown in Fig. 7 (b) and (c). Since the occluded
areas are very large and the roads in these areas may not be
visible in the satellite images, our CoANet fails to generate
roads and preserve road connectivity in these areas. In the
future, we will consider adding other information to extract the
roads in these challenging areas, such as the GPS trajectories
of pedestrians and cars. What’s more, the road network in
satellite imagery can be regarded as a graph with edges and
nodes. We can take advantage of the graph convolutional
network to extract the road, which may be effective for roads
in occluded areas.

Analysis of Running Time. As listed in Table VII, we
analyze the running time of our CoANet and several state-of-
the-art road extraction methods on the SpaceNet [65] dataset.
The comparison experiments of all methods are executed on a
workstation with 4 NVIDIA RTX TITAN GPUs. For fair com-
parison, we report the training time for images of an identical
batch size and inference time for one image with the size of
512 × 512. It is noted that our CoANet achieves the fastest
training time and inference time. In addition, the methods that

utilize post-processing steps, such as DeepRoadMapper [1]
and ImprovedConnectivity [6], require more time for training
and inference. With better performance and faster execution,
our proposed CoANet is more suitable for extracting roads
from satellite imagery.

V. CONCLUSION

In this paper, we propose a connectivity attention network
(CoANet) for road extraction from satellite imagery, which
jointly learns the segmentation and pair-wise dependencies.
We first introduce an encoder-decoder architecture network to
learn the feature of roads. Motivated by the shape of roads,
which are long-span, narrow, and distributed continuously. We
propose a strip convolution module (SCM) since it is more
aligned with the shape of roads. The SCM leverages four strip
convolutions to capture long-range context information from
four different directions, which prevents irrelevant regions
from interfering the feature learning. What’s more, to alleviate
the occlusions in road regions caused by the buildings and
trees, a connectivity attention module (CoA) is developed
to explore the relationship between neighboring pixels. The
connectivity of a given pixel with eight neighboring pixels is
predicted, which incorporates the graphical information and
enables the connectivity of roads are better preserved. Exten-
sive experiments on popular benchmarks (SpaceNet and Deep-
Globe datasets) demonstrate the superiority of our proposed
CoANet compared with several state-of-the-art methods. We
also perform ablation experiments to show the effectiveness
of the SCM and CoA modules, and provide insights into the
choices of different configurations for the CoA module. In
the future, we aim to exploit more tasks that the connectivity
attention module can be used, e.g., salient segmentation and
semantic segmentation, since the prediction of connectivity
cube can be regarded as a series of sub-problems of seg-
mentation task. Besides, we can treat the road network in
satellite imagery as a graph and take advantage of the graph
convolutional network to extract the road.
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