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JCS: An Explainable COVID-19 Diagnosis System
by Joint Classification and Segmentation

Yu-Huan Wu, Shang-Hua Gao, Jie Mei, Jun Xu, Deng-Ping Fan, Rong-Guo Zhang, and Ming-Ming Cheng

Abstract—Recently, the coronavirus disease 2019 (COVID-19)
has caused a pandemic disease in over 200 countries, influencing
billions of humans. To control the infection, identifying and
separating the infected people is the most crucial step. The main
diagnostic tool is the Reverse Transcription Polymerase Chain
Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR test
is not high enough to effectively prevent the pandemic. The chest
CT scan test provides a valuable complementary tool to the RT-
PCR test, and it can identify the patients in the early-stage with
high sensitivity. However, the chest CT scan test is usually time-
consuming, requiring about 21.5 minutes per case. This paper
develops a novel Joint Classification and Segmentation (JCS)
system to perform real-time and explainable COVID-19 chest CT
diagnosis. To train our JCS system, we construct a large scale
COVID-19 Classification and Segmentation (COVID-CS) dataset,
with 144,167 chest CT images of 400 COVID-19 patients and
350 uninfected cases. 3,855 chest CT images of 200 patients are
annotated with fine-grained pixel-level labels of opacifications,
which are increased attenuation of the lung parenchyma. We also
have annotated lesion counts, opacification areas, and locations
and thus benefit various diagnosis aspects. Extensive experiments
demonstrate that the proposed JCS diagnosis system is very
efficient for COVID-19 classification and segmentation. It obtains
an average sensitivity of 95.0% and a specificity of 93.0% on the
classification test set, and 78.5% Dice score on the segmentation
test set of our COVID-CS dataset. The COVID-CS dataset and
code are available at https://github.com/yuhuan-wu/JCS.

Index Terms—COVID-19, Joint Diagnosis, CT Classification,
CT Segmentation, COVID-19 Dataset.

I. INTRODUCTION

CORONAVIRUS disease 2019, or COVID-19, is an epi-
demic disease caused by the Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2). It outbreaks around
the world in a short period and has caused 1,914,916 confirmed
cases and 123,010 confirmed deaths as of April 15th, 2020.
COVID-19 pushes the health systems of over 200 countries
to the brink of collapse due to the lack of medical supplies
and staff and thus has been declared as a pandemic by the
World Health Organization [1]. The current main diagnostic
tool for COVID-19 is via the Reverse Transcription Polymerase
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Figure 1. Illustration of our JCS diagnosis system for COVID-19. Our
JCS system will perform the segmentation diagnosis only if the classification
branch reports positive COVID-19 predictions.

Chain Reaction (RT-PCR) test [2]. However, the RT-PCR test
is not accurate enough to well prevent the pandemic [3], [4].
So the false-negative cases of RT-PCR tests are a potential
threat to public wellness, and missing any COVID-19 cases
will probably cause secondary infections of large areas.

To hinder the terrific infection of COVID-19, medical
radiology imaging is employed as a complementary tool for
the RT-PCR test [5]. This is based on the fact that the clinical
signs of chest X-rays for most COVID-19 patients indicate lung
infection [6]. The works of [3], [4] show that CT scan tests
are with high sensitivity. Besides, a CT scan test is necessary
for monitoring the severity of the illness [7]. However, the
diagnosis duration is the major limitation of CT scan tests: even
experienced radiologists need about 21.5 minutes [8] to analyze
the test results of each case. The experienced radiologists are
severely lack during the pandemic outbreak, posting difficulties
identifying potentially infected patients in time. Thus, automatic
diagnosis systems are highly desired.

Thanks to the powerful discriminative ability of deep con-
volutional neural networks (CNNs), artificial intelligence (AI)
technologies are reforming the medical imaging community.
Deep CNNs are usually trained on large scale datasets to
demonstrate their capability. However, most of the existing
CT scan datasets for COVID-19 [9]–[12] could not meet this
demand, as they contain at most hundreds of CT images from
tens of cases. Besides, most of the current COVID-19 datasets
only provide the patient-level labels (i.e., class labels) indicating
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whether the person is infected and lacks fine-grained pixel-level
annotations. Thus, CNN models trained with these datasets
usually neglect the valuable information for explaining the final
predictions. Despite several CT scan diagnosis systems [4], [13]–
[17] have been established for testing the suspected COVID-19
cases, most of them suffer from two drawbacks: 1) they are
trained on small scale datasets and thus not robust enough for
versatile COVID-19 infections; 2) they perform classification
based on the black box CNNs while lacking the explainable
transparency to assist the doctors during the medical diagnosis.

To alleviate the drawbacks mentioned above, in this work,
we 1) construct a large scale COVID-CS dataset with both
patient-level and pixel-level annotations and 2) propose a Joint
Classification and Segmentation (JCS) based diagnosis system
to provide explainable diagnosis results for medical staffs
fighting with COVID-19. Specifically, we utilize the collected
COVID-CS dataset that contains thousands of CT images from
hundreds of COVID-19 cases to train our JCS system for
better diagnosis performance. As illustrated in Figure 1, our
JCS diagnosis system first identifies the suspected COVID-
19 patients by a classification branch and provides diagnosis
explanations via activation mapping techniques [18]. Our
system is then feasible to discover the locations and areas of the
COVID-19 infection in lung radiography via fine-grained image
segmentation techniques. With the explainable classification
results and corresponding fine-grained lesion segmentation, our
JCS system largely simplifies and accelerates the diagnosis
process for radiologists or other medical experts.

As shown in Table II, our JCS system needs only 22.0
seconds for each infected case or 1 second for each uninfected
case, much faster than the RT-PCR tests and CT scan anal-
ysis by experienced radiologists. With the assistance of our
JCS system, experienced radiologists only cost 54.4 (32.4 for
radiologists and 22.0 for JCS) seconds for each infected case
or 1.0 second for each uninfected case, keeping the same high
specificity and sensitivity. Hence, the speed and effectiveness
of assistance have shown the superiority of our JCS system.

In summary, our contributions are mainly three-fold:
• We construct a new large scale COVID-19 dataset,

called COVID-CS, which contains 3,855 fine-grained pixel-
level labeled CT images from 200 COVID-19 patients,
64,771 patient-level annotated CT images from 200
other COVID-19 patients, and 75,541 CT images of 350
uninfected cases.

• We develop a novel COVID-19 diagnosis system to
perform explainable Joint Classification and accurate
lesion Segmentation (JCS), showing clear superiority over
previous systems.

• On our COVID-CS dataset, our JCS system achieves
95.0% sensitivity and 93.0% specificity on COVID-19
classification, and 78.5% Dice score on segmentation,
surpassing previous state-of-the-art segmentation methods.

The remaining paper is organized as follows. In §II, we
briefly summarize the related works. In §III, we introduce the
developed diagnosis system for recognizing and analyzing the
COVID-19 cases. In §IV, we present our COVID-CS dataset
with our labeling procedures in detail. Extensive experiments
are conducted in §V to evaluate the performance of our

Table I
SUMMARY OF DIFFERENT DATASETS (UPDATED ON 2020/4/10).

Dataset Date Link Type #Images #Cases
PLXR [11] 2020/03/23 Link X-rays 98 70

8023Dataset [9] 2020/03/25 Link X-rays 229∗ -
CTSeg [12] 2020/03/28 Link CT 110 60

COVID-CT [10] 2020/03/30 Link CT 746∗ -
COVID-CS (Ours) 2020/04/12 - CT >144K† 750
∗: The number is reported from the authors’ GitHub repository.
†: Among our dataset, 3,855 images of 200 positive cases are pixel-
level annotated, 64,771 images of the other 200 positive cases are
patient-level annotated, and the rest 75,541 images are from the 350
negative cases.

Table II
AVERAGE TIME OF COVID-19 DIAGNOSIS BY DIFFERENT METHODS. “CT
R.” INDICATES CT RADIOLOGIST AND “CT R. + JCS” IS CT RADIOLOGIST

DIAGNOSIS WITH THE ASSISTANCE OF JCS.

Method RT-PCR CT R. CT R. + JCS JCS
Time ∼4h [19] 21.5min [8] 1s†/54.4s 1s†/22.0s

†: diagnose uninfected cases.

system on COVID-19 recognition, with in-depth analysis. §VI
concludes this work.

II. RELATED WORKS

A. Existing Accessible COVID-19 Datasets

As of April 15th, 1,914,916 people are infected by COVID-
19. But their CT scans are usually private and could not be
publicly accessed. To facilitate the development of diagnostic
systems, several COVID-19 related datasets are publicly
released by researchers around the world. A summary of these
datasets is provided in Table I.

One X-ray dataset from Cohen et al. [9] contains overall
122 frontal view X-rays, including 100 images of COVID-19
cases, 11 SARS images, and 11 other pneumonia images. The
COVID-CT dataset from [10] has 746 CT scan images, 349
images from COVID-19 patients and 397 from non-COVID-19
cases. All the images in these datasets are collected from public
websites and/or COVID-19 related papers on medRxiv, bioRxiv,
and journals, etc. CTs containing COVID-19 abnormalities are
selected by reading the figure captions in the papers. Some
other resources of the COVID-19 dataset are PLXR [11] and
CTSeg [12], which contains 98 and 110 CT scan images cases,
respectively. These datasets are on a small scale and lack
diversity since they often contain less than hundreds of images
from tens of cases. To fully exploit the power of deep CNNs,
it is essential to construct a large scale dataset to train deep
CNNs in accurate and robust COVID-19 systems.

B. Manual COVID-19 Diagnosis

The most crucial step of preventing the spread of the COVID-
19 is immediately identifying every patient from normal people.
Missing any patient will probably cause secondary COVID-19
infections in large areas. Currently, the main manual diagnostic
tool is the RT-PCR test [20]. However, the sensitivity of
RT-PCR test is not high enough to effectively prevent the

https://www.kaggle.com/nabeelsajid917/covid-19-x-ray-10000-images
https://github.com/ieee8023/covid-chestxray-dataset/tree/3f07c70b7727b4695b4c89a499ae743d16c3caa7
http://medicalsegmentation.com/covid19
https://github.com/UCSD-AI4H/COVID-CT/tree/7f65bf2c99b0909d919d43a5f53be70d4e77440b
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pandemic [3], [4]. As widely available in many hospitals, CT
scan is a complementary tool to the RT-PCR test. However,
some special cases with the RT-PCR test confirmed positive
have normal CTs [21]–[23]. Combining both tests allows
maximally to identify potentially infected people, as it can
identify COVID-19 patients in the early-stage with high
sensitivity [3], [4], [24]. The CT scan is also necessary for
monitoring the severity of the illness [7]. During the pandemic
outbreak, experienced medical staff is severely lacking, posting
difficulties identifying potentially infected patients in time.
Thus, automatic diagnosis systems are highly desired.

C. Automatic COVID-19 Diagnosis Systems

Most current medical imaging systems are developed for
common diseases that exist for many years, e.g., tuberculo-
sis [25]. These developed systems can be directly modified
to attenuate the COVID-19 outbreak. The doctors find that
the chest X-rays of COVID-19 patients exhibiting certain
abnormalities in the radiography. Based on ResNet-50 [26],
COVID-ResNet [27] is proposed to differentiate three types of
COVID-19 infections from normal pneumonia individuals. On
1531 chest X-ray images, Zhang et al. proposed a deep anomaly
detection system for COVID-19 screening, achieving 96.0%
sensitivity and 70.65% specificity. Yang et al. [28] proposed
a system to evaluate the images of 102 volunteers, with a
sensitivity of 83.3% and specificity of 94.0%. The system
developed by Li et al. [29] identifies 78 COVID-19 patients
with a sensitivity of 82.6% and a specificity of 100.0% by
using the axial and coronal-view of lung CT severity index
(CTSI). Chung et al. [14] confirmed via collected from 21
patients that visual inspection helps identify the COVID-19
cases and predict the severity via the overall lung total severity
score (LTSS). Bernheim et al. [15] analyzed the 121 COVID-
19 patients and carried on a visual check by the experienced
radiologist to categorize them as early, intermediate and late
cases. Wang et al. [16] found that the COVID-19 disease will
be severe during 6-11 days from the infection, based on a study
on 366 CT scans of 90 patients. Shi et al. [17] developed an
imaging-assisted diagnosis procedure to detect the COVID-19
caused pneumonia. Fang et al. [4] examined 81 patients by
a procedure based on the CTSI and obtained a sensitivity of
98.0%, in contrast to the sensitivity of 71.0% by RT-PCR. Zhou
et al. [30] implemented the examination using the non-contrast
CTSI of 62 COVID-19 patients, confirming that the CT-assisted
evaluation shows better detection accuracy in the progressive
stage confirmed to the early-stage. Despite their success on a
small set of samples, these COVID-19 diagnosis systems have
not been tested by large scale samples. They could not provide
useful diagnostic evidence during their diagnostic inference.
More works can refer to the reviews of [31]–[33].

As far as we know, only two works extract infected regions
via pixel-level segmentation. Rajinikanth et al. [34] performed
the segmentation via the watershed transform techniques [35]
with coarse results and limited accuracy. Zhou et al. [36]
developed a U-Net with an attention mechanism and obtained a
Dice score of 69.1% on CTSeg [12] dataset, but its training and
test split have only 88 and 22 images. In this work, we propose

a diagnosis system by integrating learning-based classification
and segmentation networks to provide explainable diagnostic
evidence for doctors and improve the user-interactive aspects
of the diagnosis process.

D. Deep Classification and Segmentation Methods

Ever since the release of the ImageNet dataset [37],
deep convolutional neural networks (CNNs) have become
the workhorse for image classification tasks with improving
performance. Representative deep classifiers, e.g., AlexNet [38],
VGGNet [39], ResNet [26], DenseNet [40], and Res2Net [41],
have been widely employed as the feature extractors for other
computer vision tasks, such as image segmentation [42]–[44],
salient object detection [45], face recognition [46], aerial images
analysis [47], style transfer [48], feature matching [49], crowd
counting [50], and image restoration [51], etc. Despite impres-
sive representation ability of these classifiers, the classification
process does not explain clearly the predicted results.

Image segmentation tackles the problem of pixel-level pre-
dictions. Semantic segmentation aims to classify the semantic
label for each pixel on a natural image [52]. Representative
works in this area include FCN [53] and DeepLab [54].
Instance segmentation focuses on discriminating each semantic
instance with a unique instance label and pixel-level mask in
the image [55]–[57]. Panoptic segmentation [58] integrates
semantic segmentation and instance segmentation, and it does
semantic segmentation on non-objects (sky, water, grass, etc.)
and instance segmentation on objects (cat, dog, bus, etc.). U-
Net [59] is a widely employed network for medical image
segmentation analysis. It is further extended to 3D U-Net [60],
TernausNet [61], and U-Net++ [62] with promising perfor-
mance on versatile image segmentation tasks. In this work, we
develop a novel COVID-19 diagnosis system by integrating
deep image classification and segmentation techniques.

III. OUR COVID-19 DIAGNOSIS SYSTEM

The opacification is the basic CT feature of COVID-19
patients [63], and it is defined as the increased attenuation
of the lung parenchyma [64]. Our JCS system consists of
an explainable classification branch to identify the COVID-
19 opacifications and a segmentation branch to discover the
opacification areas. The classifier is trained on many images
with low-cost patient-level annotations and some images with
pixel-level annotations for better activation mapping. And the
segmentation branch is trained with accurately annotated CT
images, performing fine-grained lesion segmentation. By inte-
grating the two models, our JCS system provides informative
diagnosis results for COVID-19.

A. Explainable Classification

Owing to the strong representation ability of CNNs, the
COVID-19 infections can be predicted through only patient-
level supervised training. To this end, we build a classification
branch that consists of the proposed classification model
to endow our JCS diagnosis system with the capability of
discriminating the COVID-19 patients.
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1) Diagnosing COVID-19 via Classification: Predicting
whether the suspected patient is COVID-19 positive or not is
a binary classification task based on his/her CT scan images.
Since designing the novel classification model is not our focus,
we build our classifier based on the Res2Net network [41].
As a powerful network, Res2Net has a stronger multi-scale
representation ability than ResNet [41]. The last layer is
modified as a fully-connected layer with two channels to output
the probability of COVID-19 infection or not. If the probability
of the infected channel is larger than that of the uninfected one,
the patient is diagnosed as COVID-19 positive, or vice versa.
For each patient, the CT images are sent to the classification
model one by one. If the number of infected CT images is above
a threshold, the patient is diagnosed as COVID-19 positive.

2) Explanation by Activation Mapping: As the diagnosis
process of CNN classification is in a black box, we employ the
activation mapping [18] to increase the explainable transparency
of our COVID-19 diagnosis system on its predictions. The last
convolutional layer of the classification network is followed by
a global average pooling (GAP) layer and a fully-connected
layer. Through the GAP layer, our classification model down-
samples the feature size from (H,W ) to (1, 1), and thus lost the
spatial representation ability. Through activation mapping [18],
our system finds the response region of the prediction result.
The hypothesis is that the gradient of regions in features before
the GAP layer is consistent with the prediction evidence. The
feature map before the GAP layer contains both high-level
semantic and location information. Each channel corresponds
to the activation of different semantic cues. The activation
mapping is obtained through the gradients of the predicted
probability of the feature map. Specifically, given the prediction
of COVID-19 branch yp and the feature map X before GAP,
the weight for the k-th channel of X is calculated as:

wk =
1

HW

H∑
i=1

W∑
j=1

∂yp
∂Xk

i,j

, (1)

where Xk
i,j is the value at position (i, j) in the k-th channel of

feature map X . Larger gradients in Eqn. (1) produce a larger
weight of the activation mapping for a certain channel. The
activation mapping for a COVID-19 case is computed as:

AMp =
∑
k

ReLU(wkX
k). (2)

As shown in Fig. 9, the activation mapping accurately locates
the opacification areas of COVID-19 patients, providing
explainable results for the prediction of our JCS system.

3) Alleviating Data Bias by Image Mixing: By utilizing our
explainable classification model, our system can be trained only
with patient-level annotation. However, since CT images are
from multiple sources, the classifier may be trained to overfit
unwanted areas (e.g., the area outside the lesion), as observed
via the activation mapping. Therefore, we propose to utilize the
image mixing technique [65] and help the classifier focus on the
lesion areas of COVID-19 cases. The CT images from different
sources and the corresponding patient-level annotations are
mixed during training. Specifically, for two randomly sampled
CT images xi and xj (i 6= j) and corresponding labels ŷi and

ŷj , the newly mixed sample and the corresponding label are
written as:

xmij = λxi + (1− λ)xj ,
ŷmij = λŷi + (1− λ)ŷj ,

(3)

where λ ∈ [0, 1] is a random number generated in Beta
distribution, i.e., λ ∼ Beta(α, α). With mixed samples, our
classification model is trained to focus more on the decisive
lesion areas of COVID-19 cases, rather than the bias in the
data source. Also, the mixing process weakens the confidence
of labels, and thus alleviating our system from overfitting.

4) Pixel-level Supervision for Activation Mapping: Tra-
ditional classification models only utilize image labels for
training. The activation mapping of them may be inaccurate as
these models automatically learn the differences of images of
different classes. In our proposed dataset, there are thousands of
images with pixel-level annotations for the specific opacification
areas, and they can be the direct supervision of the activation
mapping. Motivated by the above observations and the work
of [66], during the training network, we apply a segmentation
loss Lseg for the activation mapping of the COVID-19 class
channel:

Lseg =
1

HW
‖AMnorm

p,c − S‖2, (4)

where AMnorm
p,c is the activation mapping of the COVID-19

class channel normalized to (0, 1), S is the binary ground truth
pixel-level annotation map, ‖ · ‖2 denotes the `2 norms. Lseg
will not be computed if images have no ground truth pixel-level
annotations. After applying the segmentation loss Lseg , Fig. 9
shows that the activation mapping significantly improves in
locating opacifications.

B. Accurate Segmentation

Our segmentation branch aims at discovering the exact lesion
areas from the CT images of COVID-19 patients. Fig. 2 shows
the architecture of our segmentation branch with or without
the combination of the segmentation and classification models.
The details of such a combination are illustrated in Fig. 4.

1) Encoder-Decoder Architecture: Our segmentation model
consists of an encoder and a decoder.

Encoder. The encoder is based on the VGG-16 [39] backbone,
without the last two fully-connected layers. It has five VGG
blocks defined as {E1, E2, E3, E4, E5}, respectively. The
VGG-16 backbone is first fed with the CT images and produces
multi-scale feature maps from the last layers of the five VGG
blocks. To downsize the input feature map by half, the front
of each block (except the first one) is a max pooling function
with a stride of 2. The feature map produced by the block
E1 contains the finest features with the highest resolution,
while the feature map by the block E5 is coarsest with the
lowest resolution. To achieve better performance, we propose an
Enhanced Feature Module (EFM, which will be introduced in
§III-B2) for our encoder to improve its representational power.
The EFM module is added after the last layer conv5 3 in the
block E5. It consists of two Grouped Atrous Modules (GAM)
to extract stronger feature maps with larger receptive fields. The
GAM module generates an extra smaller feature map, half size
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Figure 2. The architecture of our segmentation branch. EFM indicates the Enhanced Feature Module (§III-B2). AFF refers to the Attentive
Feature Fusion strategy (§III-B3). If not combined with the classification model, M1

E ∼M5
E will be fed into the decoder; otherwise, the

combined N1
E ∼ N5

E will be fed into the decoder (Fig. 4, §III-B4). We apply deep supervision to train our segmentation branch (§III-B5).

𝝈

𝑪

(b) Attentive Feature Fusion (AFF)

𝝈

𝑪

𝝈

𝑪

UP×2

1x1

1x1

𝑀𝐷
𝑖+1

𝑀𝐸
𝑖

(𝑀𝐸
6)

𝑀𝐷
𝑖

(a) Grouped Atrous Module (GAM)

: Sigmoid Function

: Concatenation
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Pooling (GAP)

𝝈

𝑪
:

SE Block

Figure 3. Proposed (a) GAM and (b) AFF for the segmentation network.
In AFF, M i+1

D will be replaced with M6
E if i = 5. Cubes represent three-

dimensional feature maps, while rectangles mean feature vectors.

compared to the coarsest feature map of the VGG-16 backbone.
It also enhances the representational power of the feature map
produced by the block E5. Hence, our encoder produces six
levels of feature maps {M1

E ,M
2
E ,M

3
E ,M

4
E ,M

5
E ,M

6
E}, with

strides of {1, 2, 4, 8, 16, 32}, respectively. As we employ a U-
shape encoder-decoder architecture [67], all these six feature
maps will be used in the decoder, as will be introduced later.

Decoder. Our decoder has five side-outputs with 5 different
sizes. Here, we do not predict the side-output from the coarsest
feature map with a stride of 32, and thus no side-output matches
the size of the coarsest feature map M6

E . In our decoder,
we propose an Attentive Feature Fusion (AFF, which will
be introduced in §III-B3) strategy to aggregate the feature
maps from different stages and predict the side-output of each
stage. Our AFF emphasizes the significance of the top-level
feature map and utilizes the attention mechanism to filter useful
features from the bottom feature map. The last output with the
same resolution of the CT image input will be chosen as the
final prediction.

2) Enhanced Feature Module: The proposed EFM module
is added after the last layer of E5 in the VGG-16 encoder. It
consists of two sequential GAM modules and a max pooling
function between them. As shown in Fig. 3 (a), the first layer
of the GAM module is a 1× 1 convolution layer to expand the
channels of the feature map. Then the feature map is equally
divided into 4 groups. Unlike the trivial group convolution,
we deploy atrous convolution [54] with different atrous rates
to the 4 groups to derive a more abundant feature map with
various receptive fields. Atrous convolution can greatly enlarge
the perceptive field of convolutional filters and keep the same
computational cost with normal convolution. In 2D cases, atrous
convolution with 3× 3 kernel size can be simply formulated
as below:

q[i, j] = bias+

+1∑
k=−1

+1∑
l=−1

(x[i+k ·n, j+ l ·n] ·w[k+1, l+1]),

(5)
where n indicates the atrous rate, w is the convolution
weight of which the size is 3 × 3, q and x are output and
input feature map, respectively, i and j are the feature map
location. Note that n = 1 is the special case for normal
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Figure 4. Combination of the segmentation and classification models. We
combine the encoder features of the segmentation model with the backbone
features of the classification model.

convolution. To fully exploit useful features, we adopt the
Squeeze-Excitation (SE) block [68] in our network, that is,
using the attention mechanism for re-calibrating channel-wise
convolutional feature responses. More specifically, each channel
of the input feature map will be multiplied by a channel factor
calculated by a SE block. The SE block consists of two linear
layers, followed by a sigmoid function. The input feature map
after global average pooling will be fed into this block and
we can derive a channel factor ranging (0, 1) for each input
feature channel. We set the reduction rate in the SE block as 4,
which means we set the output number of the first linear layer
as the 1/4 number of the input channels. To reduce the output
channels by half, we add a 1× 1 convolution layer after the
SE block.

At last, we use a 3 × 3 convolution layer, in which the
number of channels equals that of the input feature map, as
the transition layer to the next module.

3) Attentive Feature Fusion: Traditional fusion strategy of
top-down decoders [67], [69] treats the input feature maps
equally. To better aggregate the feature maps, we propose an
Attentive Feature Fusion (AFF) strategy. In our AFF fusion
strategy, the feature map with a smaller size is more valued.
As shown in Fig. 3 (b), the input feature maps M i

E and
M i+1
D in the current stage are reduced to half size via 1× 1

convolution layers. Then the reduced M i+1
D is up-sampled by

bilinear interpolation to output a double-sized feature map. We
concatenate the two outputs and apply the SE block (also used
in GAM) to produce an enhanced feature map. This feature
map is then concatenated with the feature map of doubly up-
sampled output in the previous stage. After the concatenation,
we use another SE block to enhance the feature map again.
After each SE block, we use a 3×3 convolution layer, with the
same number of channels as the input, as the transition layer.
A 1× 1 convolution layer with a single neuron will be used to
predict one feature map as the side-output of the current stage.

4) Combination with the Classification Model: As described
above, we have designed two models, one for COVID-19

classification and the other one for COVID-19 opacification
segmentation. However, they are separately working on the
diagnosis system, and there might be a way to combine
them together for better performance. Inspired by this, we
leverage the features of the classification model to enhance the
features of the segmentation model. As shown in Fig. 4, we
merge the feature maps of each stage from the encoder of the
segmentation model and the backbone of the classification
model together. The feature maps of the encoder of the
segmentation model are M1

E ,M
2
E ,M

3
E ,M

4
E ,M

5
E as defined

in §III-B1. The Res2Net [41] backbone of the classification
model has five stages and we use the last feature maps Ak
of stage k ∈ [1, 5] for the feature combination. In merging
the features of stage k, we have two feature maps Ak,Mk

E

for the merge. We first resize the smaller one Ak, making it
the same size as the larger one Mk

E , and concatenate them
together. Then, we apply a simple 1× 1 convolution layer for
the feature channel reduction, making the output feature maps
the same number of channels as Mk

E . Such 1× 1 convolution
layer is followed by a SE block with a reduction rate of 4. At
last we use a 3× 3 convolution layer of the same number of
input and output channels as the transition layer. The output
Nk
E will be regarded as the enhanced encoder features and be

fed into the decoder of the segmentation model (Fig. 2). Then
results are predicted as introduced in §III-B1.

5) Deep Supervision Loss: Although the final prediction is
only from the last side-output, we apply the deep supervision
strategy [70] to all side-outputs with different sizes. For each
side-output, we up-sample it to the size of the ground-truth
map, and compute the sum of the standard binary cross-entropy
loss and the Dice loss [71] as follows:

L = BCE(P,G) + 1− P ·G
‖P‖1 + ‖G‖1

, (6)

where the binary cross-entropy (BCE) loss is averaged among
all H ×W pixels, pi,j is the confidence score at pixel (i, j)
calculated by a sigmoid function, and “·” means the dot
product. P and G are predicted map and ground-truth map,
respectively, while ‖P‖1 and ‖G‖1 denote the corresponding
`1 norms.

C. Joint Diagnosis

An explainable classifier or accurate segmentation model
itself could not fully implement comprehensive functions for
COVID-19 diagnosis. Comparing to the segmentation model,
our classifier is trained with CT images from both COVID-19
infected and uninfected cases, benefiting from more training
data with lower annotation costs. Although our classifier can
provide explainable lesion location of COVID-19 through
activation mapping techniques, it cannot perform accurate and
complete lesion segmentation. To this end, our segmentation
model further provides complementary analysis by discovering
the complete lesions in the lung and estimate the severity of the
COVID-19 patients. But annotating vast segmentation labels by
experienced radiologists is prohibitively expensive. To integrate
their advantages for better application, we develop a diagnosis
system for COVID-19 via joint explainable classification and
segmentation models. In practice, our classification model will
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Figure 5. Examples of our COVID-CS dataset, including CT scan images and labels of a normal person (1st column), two community-acquired
pneumonia (CAP) cases (2nd and 3rd columns), and three COVID-19 patients from mild to severe (4th ∼ 6th columns).
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Figure 6. Illustration of diverse information about opacification
areas (in pixels), location (x0,y0), position (left, up), and width/height
of opacification areas in our COVID-CS dataset.

first predict whether the CT images of a suspected case to be
COVID-19 positive or not. If the prediction is positive, the
suspected case is very likely to be infected by COVID-19. Our
segmentation model will then be performed on the CT images
for in-depth analysis and to discover the whole opacification
areas in each CT image.

IV. OUR COVID-CS DATASET

Data plays an essential role in the deep learning-based AI
diagnosis systems. Currently, there are few publicly available
COVID-19 datasets with either large scale samples or fine-
grained pixel-level labeling. To fill in this gap, we construct
a new COVID-19 Classification and Segmentation (COVID-
CS) dataset. In this section, we present the data collection,
professional labeling, and statistics of our dataset. Fig. 5 shows
some examples of our COVID-CS dataset (normal case and
COVID-19 cases) and examples of CAP patients. Fig. 6 presents
diverse information in the segmentation set of our COVID-
CS dataset.

A. Data Collection

To protect the patients’ privacy, we omit their personal
information in our dataset construction. We collected 144,167
CT scan images from 750 cases, 400 of which are positive
cases of COVID-19, and the other 350 cases are negative, all
confirmed by RT-PCR tests. As previous studies [72] did, we
do not take community-acquired pneumonia (CAP) patients
(see Fig. 5) into consideration. Although CAP patients may be
diagnosed as COVID-19 positive with our proposed diagnosis
system since CT images of CAP patients also have similar
opacifications, the threat of CAP is much less than that of
COVID-19. And our purpose is to quickly develop an automatic
diagnosis system and diagnose suspected cases as soon as
possible. Besides, CAP patients can be simply diagnosed as
COVID-19 negative with the help of the CAP/COVID-19
classifier [72], RT-PCR test, and the experience of doctors.

All involved patients underwent standard chest CT scans.
Each case has 250 ∼ 400 CT images, and the number of
CT images in each case is only determined by the type
of the CT scanner and its scan settings. The CT scanners
include BrightSpeed, Discovery CT750 HD, LightSpeed VCT,
LightSpeed16, Revolution CT from GE Medical Systems,
Aquilion ONE from Toshiba, and uCT 780 from United
Imaging Healthcare. The numbers of cases from different
scanners are summarized in Table III. The thickness of
reconstructed CT slices ranges from 0.75mm to 1.25mm (Fig. 7
for more details).

B. Professional Labeling

We provide two aspects of labels for the collected CT scan
images in our COVID-CS dataset, so as to implement joint
classification and segmentation tasks. As mentioned above, our
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Figure 7. The age, gender, and slice thickness distribution of the COVID-19 patients in our COVID-CS dataset. Zoom in for details.
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Figure 8. Statistics of the segmentation set (200 COVID-19 cases) in our COVID-CS dataset. (a) Lesion count distribution. (b) The
distribution of width & height of the opacification areas. (c) The relationship between the opacification areas and their locations.

Table III
THE CT SCANNERS AND NUMBERS OF POSITIVE CASES.

Manufacturer Product Name #Cases
GE Medical Systems Revolution CT 1
GE Medical Systems LightSpeed VCT 6
GE Medical Systems Discovery CT750 HD 12
GE Medical Systems BrightSpeed 12

Toshiba Aquilion ONE 33
GE Medical Systems LightSpeed16 64

United Imaging Healthcare uCT 780 272

dataset is divided into 400 COVID-19 cases and 350 uninfected
cases. For the segmentation task, we perform professional
labeling through the following strategies:
• In order to save their labeling time, the radiologists only

select at most 30 discrete CT scan images for each patient,
in which the infections are observed for further annotation.
In this step, our goal is to label every opacification area
with pixel-level annotations.

• To generate high-quality annotations, we first invite a
radiologist to mark as many opacification areas as possible
based on his/her clinical experience. Then we invite
another senior radiologist to refine the labeling marks
several times for cross-validation. Some inaccurate labels
are fixed after this step.

By implementing the above annotation procedures, we finally
obtain 3,855 pixel-level labeled CT scan images of 200 COVID-
19 patients with a resolution of 512×512. 64,771 CT images
of the other 200 COVID-19 patients are without pixel-level

annotation due to the shortage of radiologists, but such data
will be used in classification tests. As can be seen in the last
three columns of Fig. 5, our COVID-CS dataset covers different
levels, i.e., mild, medium, and severe, of COVID-19 cases.

C. Dataset Statistics

Age. The 400 COVID-19 patients (175 males and 225 females)
range from 14 to 89 years, with an average age of 48.9 years.
Fig. 7 shows the distribution of ages, the counts of samples in
age ranges, and the gender percentages.

Lesion count. As shown in Fig. 8 (a), we illustrate the
distribution of lesion counts. We observe that the lesion count
distributes from 1 to 10 in each CT scan image.

Opacification areas. We plot the widths and heights of the
opacification areas in Fig. 8 (b). The ranges of width and
height are 7 ∼ 191 and 8 ∼ 271, respectively, showing diverse
distributions.

Location. We also show the relationship between each opaci-
fication area and the corresponding central location (x0, y0) in
Fig. 8 (c). As can be seen, the normalized opacification areas
range from the smallest size (35/28452 pixels) to the largest
size (28452/28452 pixels). It also shows that, in our COVID-
CS dataset, the opacification areas are evenly distributed in
diverse locations, which are also evenly distributed in the lungs.
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V. EXPERIMENTS

A. Experimental Settings

Training/Test Protocol. For the segmentation task, our training
set contains 2,794 images from 150 COVID-19 patients and
the test set has 1,061 images from the other 50 COVID-19
cases. For the classification task, the training set contains the
2,794 images from the 150 COVID-19 infected cases in the
segmentation set. In addition, we randomly pick 150 uninfected
cases with 7,500 CT images as negative cases for training. The
test set contains the 64,711 images of the other randomly
selected 200 infected cases and the 68,041 images from 200
uninfected cases.

Evaluation Metrics. For the classification task, we adopt the
widely used metrics of specificity and sensitivity as suggested
by [25]. For the segmentation task, we use two standard metrics,
i.e., Dice score [73] and Intersection over Union (IoU). To
provide a more comprehensive evaluation, we further use the
widely used metric enhanced alignment measure (Eφ) [74].

Comparison methods. On the classification task, we compare
our classification model with or without the image mixing
technique [65]. On the segmentation task, to provide an in-
depth evaluation of our JCS model, we compare it with versatile
cutting-edge models, i.e., the U-Net [67] for medical imaging
and the DSS [75], PoolNet [76], and EGNet [77] for saliency
detection.

B. Implementation Details

In our JCS system, the classification and segmentation
models are trained separately. For the classification model,
we train it with a batch-size of 256 on 4 GPUs. The CT
images are resized into 224 × 224 for computational efficiency.
We adopt the SGD optimizer with the initial learning rate
of 0.1, divided by 10 in every 30 epochs. The classifier is
trained with 100 epochs. For data augmentation, we use the
random horizontal flip and random crop, and the image mixing
technique [65] to alleviate the data bias. The α in the Beta
distribution of image mixing is set as 0.5.

For the segmentation model, the number of CT images in
each mini-batch is always 4, and the size of the input CT images
is unchanged as 512× 512. The backbone of our segmentation
model is pretrained on ImageNet [37]. The atrous rates of four
atrous convolutions in two sequential GAMs are {1, 3, 6, 9} and
{1, 2, 3, 4}, respectively. The initial learning rate is 2.5×10−5.
We adopt the poly learning rate policy that the actual learning
rate will be multiplied by a factor (1− cur iter

max iter )
power, where

the power is 0.9. The segmentation model is trained with 21000
iterations. We employ the Adam [78] optimizer and set β1,
β2 as 0.9 and 0.999, respectively. For data augmentation, we
use random horizontal flip and random crop. When combined
with the classification model, the classification model has been
pretrained on our classification training set with pixel-level
annotations.

Table IV
SENSITIVITY AND SPECIFICITY OF OUR CLASSIFICATION MODEL

UNDER DIFFERENT THRESHOLDS. WE SET THE THRESHOLD AS 25
(THE GRAY ROW) IN THE FINAL SETTING.

No. Threshold Sensitivity Specificity
1 15 96.0% 91.5%
2 20 95.0% 92.0%
3 25 95.0% 93.0%
4 30 94.5% 93.5%

C. Results

Activation mapping on explainable classification. Fig. 9
shows the visualization of activation mapping (AM) of our
classification branch trained with or without image mixing [65].
At first, we train our classification model and achieve good
performance in terms of sensitivity and specificity. But we find
that The AM of our classification model initially trained with
random horizontal flip and random crop (Fig. 9 (a)) not only
covers the lesion areas, but also presents unrelated areas. If
this problem is not solved, an automatic diagnosis system with
an overfitted classification network is very harmful to clinical
diagnosis. To solve this problem, we investigated and identified
that the image mixing technique could solve this problem. By
introducing the image mixing technique [65], the AM of our
classification model provides more accurate locations of the
opacification areas as shown in Fig. 9 (b). Moreover, Fig. 9 (c)
indicates the AM of models trained with the help of pixel-level
supervision (segmentation loss Lseg as introduced in §III-A4).
The AM of models becomes more accurate and specific in
locating the opacifications. However, the improvements of
adding segmentation loss Lseg in classification performance can
be ignored, potentially due to saturated classification accuracy
(No.3, Table IV).

Performance on explainable classification. During the infer-
ence, AM assists the medical experts using our JCS system
to judge whether the prediction is correct or not. For each
patient, opacifications can be found in some of its CT images
and many images may have no opacifications. So we set
a threshold for the classification. When the number of CT
images from a suspected patient is larger than a threshold,
the patient is diagnosed as COVID-19 positive. Changing the
threshold enables our model to achieve a trade-off between
sensitivity and specificity. Table IV shows the results of the
classification model under different thresholds on the test set
of our COVID-CS dataset. One can see that our model is very
robust to the changing of thresholds, and achieves a sensitivity
of 95.0% and a specificity of 93.0% when the threshold is
25. However, AM could not provide accurate segmentation
of opacification areas (if any exist). Subsequently, we further
employ our segmentation model to discover the opacification
areas in the CT images of COVID-19 patients.

Ablation study on our EFM and AFF in the segmentation
branch. In §III-B we introduced two novel modules named
EFM and AFF for the segmentation. EFM is designed to
enhance the representation power of our encoder in the
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Figure 9. Visualizations of activation mapping (AM). AM origin (mixing) means the AM of models trained without (with) image mixing technique [65].
Seg guiding means the AM of models trained with the segmentation loss Lseg .

Table V
ABLATION STUDY FOR THE PROPOSED EFM AND AFF IN THE
SEGMENTATION MODEL. THE BASELINE IS THE VGG16-BASED

SEGMENTATION MODEL WITHOUT EFM&AFF (NO. 1). WE ADD EFM AND
AFF SEPARATELY AND SHOW THE EFFECTIVENESS OF THEM (NO. 2 AND

NO. 3). THE NO. 4 RESULT IS THE COMPLETE VERSION OF THE
SEGMENTATION MODEL.

No. EFM AFF Dice IoU Eφ

1 71.0% 57.7% 88.0%
2 4 74.3% 61.4% 88.9%
3 4 75.9% 63.4% 90.9%
4 4 4 77.5% 65.4% 92.0%

Table VI
ABLATION STUDY FOR THE COMBINATION BETWEEN THE SEGMENTATION
MODEL AND THE CLASSIFICATION MODEL. THE BASELINE SEGMENTATION

RESULTS ARE GENERATED USING THE SEGMENTATION MODEL ONLY
(NO.1). AFTER ADDITIONALLY ADDING FEATURES FROM THE

CLASSIFICATION MODEL, WE ACHIEVE 1.0% IMPROVEMENT IN TERMS OF
THE DICE METRIC (NO.2).

No. SEG +CLS Dice IoU Eφ

1 4 77.5% 65.4% 92.0%
2 4 4 78.5% 66.4% 92.7%

segmentation branch. In the feature fusion stage, AFF is applied
and the feature map with a smaller size is more valued while
the traditional fusion strategy treats the input feature maps
equally. The ablation studies for the proposed EFM and AFF are
shown in Table V. The No.1 result is the baseline performance
without EFM and AFM. After applying the proposed EFM and
AFF separately to the baseline, the performance has 3.3% and

Table VII
QUANTITATIVE RESULTS ON OUR SEGMENTATION TEST SET.

Methods Publication Dice IoU Eφ

U-Net [67] MICCAI’15 65.1% 54.1% 79.7%
DSS [75] TPAMI’19 65.7% 51.7% 79.9%

EGNet [77] ICCV’19 69.3% 55.4% 83.6%
PoolNet [76] CVPR’19 69.7% 55.9% 83.9%

JCS (Ours) Submit’20 78.5% 66.4% 92.7%

4.9% improvement in terms of the Dice metric. So both EFM
and AFF are very helpful for the segmentation branch. When
combining EFM with AFF, we achieve 6.5% higher results in
terms of the Dice metric. The improvement in terms of the
IoU and E-measure [74] metric is similar to that of the Dice
metric. Hence, the proposed EFM and AFF are very beneficial
for the segmentation model.

Ablation study on the combination between the segmenta-
tion model and classification model. As introduced in §III-B4,
we combine the classification model with the segmentation
model for deriving more abundant features. To verify such a
choice, we run the experiments as shown in Table VI. The
baseline is the single segmentation model (No.1, Table VI).
But we also observe that the choice of the combination of the
classification model and segmentation model (No.2, Table VI)
has 1.0% improvement in terms of the Dice metric, and shows
features of the classification model can certainly help the
segmentation model predict better results.
Comparison of segmentation performance. Table VII lists
the quantitative comparisons of 4 cutting-edge methods and
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Figure 10. Qualitative comparisons of different methods on our segmentation test set. The first, second, and third rows show the
comparison results on CT images with different lesion areas from the mild, medium, and severe COVID-19 patients, respectively.

(a) (b)

Figure 11. Statistical analysis for our segmentation model on our
segmentation test set. (a) The relationship between the opacification area
of each CT image and the corresponding Dice score. (b) The relationship
between the lesion count and the corresponding probability distribution of the
Dice score.

our model on segmentation. It can be seen that the proposed
model achieves the best result on all three metrics. It obtains
improvements of 8.8%, 10.5%, and 8.8% on Dice score, IoU,
and Eφ over the second-best PoolNet [76], respectively. Besides,
PoolNet [76] and EGNet [77] obtain comparable results on the
three metrics. U-Net [67] performs better than DSS [75] in
terms of IoU, though they are comparable on the Dice score.
Fig. 10 shows the qualitative results of the comparison methods.
One can see that the other competitors produce inaccurate or
even wrong predictions of the lesion areas in the CT images
of mild, medium, and severe COVID-19 infections. But our
segmentation model correctly discovers the whole lesion areas
on all levels of COVID-19 infections.

To further study its stability, we perform a statistical analysis
of our segmentation model on our segmentation test set. Fig. 11
(a) shows the correlation between the Dice score of our model

and the opacification areas of CT images. Note that the CT
images with the opacification area ≥ 8000mm2 are not plotted
in Fig. 11 (a) since they only occupy 1.0% of all CT images
in terms of quantity. We observe that 95.9% of CT images
have the Dice scores in [0.6, 1], while the other 3.3% of CT
images are with Dice scores between [0.1, 0.6) and recognized
as bad cases. Only 0.8% of CT images suffer from Dice scores
of less than 0.1, and they are taken as failure cases. We also
explore the relationship between the lesion count of each slice
and the Dice score from a different perspective. As shown in
Fig. 11 (b), the probability distribution of the Dice score is
little affected by the number of lesion counts in a CT image.
The medium dice score is above 0.8 for 4 different cases of
lesion counts, and the 95.0% confidence interval lies in [0.5, 1].
We also observe that the lesion count of failure cases is ≤ 2.
The consistently promising performance on segmenting lesion
areas and the low probability (0.8%) of failure confirm the
stability of our segmentation model.

Diagnosis of time. The speed test of the JCS system is on
a single RTX 2080Ti. Assuming each suspected case has
300 CT images, the classification model in JCS only costs
about 1.0 second to ensure whether infected. If infected, The
segmentation model will spend 21.0 seconds on fine-grained
lesion segmentation. Hence, the JCS system costs 22.0 seconds
for each infected case or 1.0 second for each uninfected
case. Note that the complete RT-PCR test and radiologist CT
diagnosis cost about 4 hours and 21.5 minutes, respectively,
no matter the cases are infected or not.

VI. CONCLUSION

To facilitate the training of strong CNN models for COVID-
19 diagnosis, in this paper, we systematically constructed
a large scale COVID-19 Classification and Segmentation
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(COVID-CS) dataset. We also developed a Joint Classification
and Segmentation (JCS) system for COVID-19 diagnosis.
In our system, the classification model identified whether
the suspected patient is COVID-19 positive or not, along
with convincing visual explanations. It obtained a 95.0%
sensitivity and 93.0% specificity on the classification test
set of our COVID-CS dataset. To provide complementary
pixel-level prediction, we implemented a segmentation model
to discover fine-grained lesion areas in the CT images of
COVID-19 patients. Comparing to the competing methods,
e.g., PoolNet [76], our segmentation model achieved an
improvement of 8.8% on the Dice metric. Our JCS system is
also very stable. On our segmentation test set, it failed only
on 0.8% images and obtained Dice scores between [0.6, 1]
for 95.9% of images. The online demo of our JCS diagnosis
system for COVID-19 will be available soon.
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