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SANet: A Slice-Aware Network for Pulmonary
Nodule Detection

Jie Mei, Ming-Ming Cheng, Gang Xu, Lan-Ruo Wan, and Huan Zhang

Abstract—Lung cancer is the most common cause of cancer death worldwide. A timely diagnosis of the pulmonary nodules makes
it possible to detect lung cancer in the early stage, and thoracic computed tomography (CT) provides a convenient way to diagnose
nodules. However, it is hard even for experienced doctors to distinguish them from the massive CT slices. The currently existing nodule
datasets are limited in both scale and category, which is insufficient and greatly restricts its applications. In this paper, we collect
the largest and most diverse dataset named PN9 for pulmonary nodule detection by far. Specifically, it contains 8,798 CT scans and
40,439 annotated nodules from 9 common classes. We further propose a slice-aware network (SANet) for pulmonary nodule detection.
A slice grouped non-local (SGNL) module is developed to capture long-range dependencies among any positions and any channels
of one slice group in the feature map. And we introduce a 3D region proposal network to generate pulmonary nodule candidates
with high sensitivity, while this detection stage usually comes with many false positives. Subsequently, a false positive reduction
module (FPR) is proposed by using the multi-scale feature maps. To verify the performance of SANet and the significance of PN9,
we perform extensive experiments compared with several state-of-the-art 2D CNN-based and 3D CNN-based detection methods.
Promising evaluation results on PN9 prove the effectiveness of our proposed SANet. The dataset and source code is available at

https://mmcheng.net/SANet/.

Index Terms—Pulmonary Nodule Detection, Nodule Dataset, Slice Grouped Non-local, False Positive Reduction.

1 INTRODUCTION

UNG cancer has become one of the main causes of cancer

death worldwide [1], [2]. Pulmonary nodules are the lesions
in the lungs, which have a high probability of evolving into
malignant tumors. Diagnosis of the pulmonary nodules at an early
stage and timely treatments are the best solutions for lung cancer.
The thoracic computed tomography (CT) is an effective tool for
the early diagnosis of the pulmonary nodules [3], which plays
an important role in reducing the mortality of lung cancer [4].
In the CT images, the absorption levels of X-ray for nodules
and other tissues are often the same. However, nodules are
usually isolated and spherical, which are quite different from
the vessels and bronchus’ continuous pipe-like structure. Since
interpreting CT data requires analyzing hundreds of images at
a time, an experienced doctor often takes about 10 minutes to
perform a thorough examination of a patient. Moreover, there are
many small nodules, and different types of nodules have different
morphology. It is a big challenge for doctors to accurately identify
and diagnose the malignancy of nodules [5].

Computer-aided diagnosis (CAD) systems have been de-
veloped to assist doctors in interpreting the CT images more
effectively and accurately [0], [7]. Traditional CAD systems
detect nodule candidates mostly relying on the morphological
operations or low-level descriptors [8], [9], [10]. These methods
often obtain inferior detection results due to the variety of nodules
in size, shape, and types. With the development of deep learning,
convolutional neural networks (CNNs) such as Faster R-CNN
[11], SSD [12], and YOLO [13] have been proposed and proven to
be effective in object detection. CNNs have also been introduced
in the field of medical image analysis [14], [15], [16], [17], [18],
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[19], [20], [21], [22]. For pulmonary nodule detection, CNN-
based methods [7], [23], [24], [25], [26], [27]are proven to be
much more effective than the traditional methods. Compared to
the 2D object detection in natural images, pulmonary nodule
detection is much harder since it is a 3D object detection problem
using 3D CT data. Some studies such as [26], [28] utilize 2D
region proposal networks (RPNs) to obtain proposals in each 2D
slice of the 3D CT images, then the 2D proposals are merged
across slices to generate 3D proposals. Nowadays, more and more
methods [7], [23], [24] adopt 3D CNN based models to deal with
the CT data and directly generate 3D proposals. Compared to
the 2D CNN, 3D CNN has much more parameters, making it
need more time and more GPU memory to train. However, the
performance of 3D CNN models is better than 2D ones for CT
data, as a comparative study shown in [28].

With the publicly available of several CT datasets such as
LIDC-IDRI [29] and LUNA16 [30], CNN-based methods have
become the trend for pulmonary nodule detection. These datasets
allow researchers to develop and evaluate their algorithms for
nodule detection under the same evaluation metrics, further
promoting the CAD systems’ application in practice. However,
dataset like LUNA16 [30], the most widely used dataset nowa-
days, only contains 888 CT scans with a limited number and
categories of labeled pulmonary nodules, which is insufficient
for the training of 3D CNNs and restricts its application in the
diagnosis of lung cancer. Therefore a more extensive and more
diverse dataset is urgently needed.

This paper introduces a new large-scale dataset, namely PN9
(pulmonary nodule with 9 categories), for pulmonary nodule de-
tection. First, we collect CT images from two major hospitals and
different scenes such as the clinic, hospitalization, and physical
examination. After performing quality assurance, 8,798 CT scans
from 8,798 different patients are obtained. Next, all the private
health information of the patients is removed through the data
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Fig. 1: Examples of the pulmonary nodules in the PN9. Each
image belongs to a different class of nodules. SN, GGN, and PSN
denote solid, ground-glass, and part-solid nodules, respectively.
The size of each nodule is labeled in the parentheses. The 1st
and 3rd rows are the complete slices, while the rest two rows are

zoomed-in images, respectively.

masking process. Attending physicians then further check and
annotate the CT images with the bounding boxes and category
labels following a two-phase process. Finally, we obtain the PN9
dataset, including 40,439 annotated nodules, which are divided
into 9 common classes. Compared with the current existing
pulmonary nodule datasets, PN9 contains a larger number of CT
scans and more classes, contributing to the pulmonary nodule
detection and allowing researchers to design more effective algo-
rithms based on the rich properties of nodules. Meanwhile, more
small-size pulmonary nodules annotated in PN9 help diagnose
small nodules more accurately and result in the earlier treatment
of patients. Fig. 1 shows some examples of the labeled pulmonary
nodules in PN9.

What’s more, we propose a slice-aware network (SANet)
for pulmonary nodule detection. We first introduce an encoder-
decoder architecture network to learn the feature of nodules,
since their size is much smaller than the common objects in
natural images. According to doctors’ diagnosis way, we propose
a slice grouped non-local module (SGNL) and add it to the
encoder network. SGNL is able to capture long-range depen-
dencies among any positions and any channels of one slice
group in the feature map. And 3D region proposal network
is introduced to generate pulmonary nodule candidates with
high sensitivity, while this detection stage usually comes with
many false positives. Subsequently, we develop a false positive
reduction module (FPR) by using the multi-scale feature maps.
To validate the performance of SANet and the significance of the
PN9 dataset, we perform extensive experiments compared with
several state-of-the-art 2D CNN-based and 3D CNN-based object
detection algorithms. Promising evaluation results on PN9 prove

the effectiveness of our proposed SANet.
Our contributions are summarized as follows.

e We construct a new pulmonary nodule dataset, called
PNO9, which contains 8,798 CT scans and 40,439 anno-
tated nodules of 9 different classes. To the best of our
knowledge, PN9 is the largest and most diverse dataset
for pulmonary nodule detection by far.

We propose a slice-aware network (SANet) for pulmonary
nodule detection, which mainly contains a slice-grouped
non-local module and a false positive reduction module.
Compared with previous state-of-the-art 2D CNN-based,
3D CNN-based detection methods, and experienced doc-
tors, SANet makes full use of the characteristics in CT
images and achieve better performance in several evalua-
tion metrics.

2 RELATED WORK

This section introduces the related works of pulmonary nodule
detection and reviews the existing pulmonary nodule datasets.

2.1 Pulmonary Nodule Detection

Unlike general 2D object detection, pulmonary nodule detection
is a 3D object detection problem using 3D CT images. It draws
more and more attention in recent years because of its great clin-
ical value. Traditional nodule detection methods mostly rely on
hand-designed descriptors or morphological operations. Messay
et al. [8] introduce a fully automated lung segmentation algo-
rithm, which combines morphological processing and intensity
thresholding to detect and segment lung nodule candidates simul-
taneously. Jacobs et al. [9] adopt shape, texture, intensity features,
and a novel set of context features to detect subsolid pulmonary
nodules. A novel work based on global segmentation methods
is proposed in [31] for lung nodule candidate detection, and it
is combined with simple rule-based filtering and mean curvature
minimization. [10] uses manually designed filters to screen the
possible pulmonary nodules in CT scans, which highly depends
on professional medical knowledge. However, it is difficult for
these methods to detect nodules in the complex region, especially
nodules that present a high degree of vascular attachment.

With the development of deep learning, many CNNs have
been proposed for object detection. Some methods have two
stages, like [11], [32], [33], [34], while most recent methods [12],
[13], [35], [36], [37], [38] have one stage that the bounding boxes
and class probabilities are predicted simultaneously. CNN-based
methods have also been introduced in field of the pulmonary
nodule detection. Ding et al. [26] introduce a deconvolutional
structure to Faster RCNN for candidate detection on axial slices.
Setio et al. [24] propose multi-view ConvNets for pulmonary
nodule detection. The inputs are a set of 2D patches from dif-
ferently oriented planes. The outputs from multiple 2D ConvNets
are combined using a dedicated fusion method to get the final
results. These methods require post-processing to integrate 2D
proposals into 3D proposals, which is inefficient and may affect
the accuracy of nodule detection.

Recently, more and more studies adopt 3D CNN-based mod-
els due to the 3D nature of CT images. Dou et al. [27] propose
a method employing 3D CNNs for nodule detection from CT
scans, and introduce an effective strategy encoding multilevel
contextual information to deal with the large variations and hard
mimics of lung nodules. In [39], a 3D CNN with an encoder-
decoder structure is developed for pulmonary nodule detection.
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It also adopts a dynamically scaled cross-entropy to reduce the
false positive rate and the squeeze-and-excitation structure to fully
utilize channel inter-dependency. Zhu et al. [23] propose a 3D
Faster R-CNN with 3D dual-path blocks for nodule detection and
a U-Net-like [40] architecture to effectively learn nodule features.
To promote further researches in this field, Liao et al. [7] adopt
a 3D RPN to detect pulmonary nodules. They introduce a leaky
noisy-OR gate to evaluate the cancer probabilities by selecting
the top five nodules based on the detection confidences. [41]
proposes a novel multi-scale gradual integration CNN to learn
features of multi-scale inputs with a gradual feature extraction
strategy, which reduces many false positives. An end-to-end prob-
abilistic diagnostic system is introduced in [42], which contains
a Computer-Aided Detection (CADe) module for detecting sus-
picious lung nodules and a Computer-Aided Diagnosis (CADx)
module for patient-level malignancy classification. Harsono et
al. [43] propose a lung nodule detection and classification model
I3DR-Net, which combines the I3D backbone with RetinaNet and
modified FPN framework. Song et al. [44] develop a 3D center-
points matching detection network (CPM-Net) for pulmonary
nodule detection. It automatically predicts the position and aspect
ratio of nodules without the manual design of anchor parameters.

There are also some works for pulmonary nodule classi-
fication [28], [45], [46]. Before CNN is introduced, features
like shape, 3D contour, and texture are widely used for nodule
diagnosis [45], [47], [48]. Subsequently, a multi-scale CNN
for capturing nodule heterogeneity by extracting features from
stacked layers is proposed for nodule classification [49]. Inspired
by the deep dual-path network (DPN) [50], Zhu et al. [23]
propose a 3D DPN to learn the features of nodules and adopt
a gradient boosting machine (GBM) for nodule classification.
Additionally, Some multi-instance learning and deep transfer
learning approaches are employed for nodule classification of
patient-level [51], [52], [53]. For example, Hussein et al. [51]
adopt graph regularized sparse multi-task learning to incorporate
the complementary feature from nodule attributes for malignancy
evaluation.

2.2 Pulmonary Nodule Datasets

Some of the pulmonary nodule datasets have been released [0],
[29], [54], [55], which make it possible for researchers to develop
and evaluate their CNN-based methods for pulmonary nodule
detection under unified evaluation metrics. In 2010, ANODE(09
was proposed by Van et al. [6], which only contains 55 CT
scans acquired using a single scanner and scan protocol. Besides,
it contains a limited number of larger nodules that generally
are more likely to be malignant. Subsequently, several datasets
with larger pulmonary nodules are introduced. The LIDC-IDRI
dataset [29] contains 1,018 CT scans with annotations from
four experienced radiologists. The nodules are divided into three
categories: nodules > 3 mm, nodules < 3 mm, and non-nodule.
Manual 3D segmentation is implemented for nodules categorized
as nodules > 3 mm. The CT scans in LIDC-IDRI are collected
from seven different academic institutions and a range of scanner
models. The LUNA16 dataset [30] is collected from the LIDC-
IDRI [29], where CT scans with a slice thickness greater than
3 mm are discarded. In fact, the slice thickness of all CT scans
in the LUNA16 dataset [30] is less than 2.5 mm. Besides, scans
with missing slices or inconsistent slice spacing are also excluded.
This dataset eventually contains 888 CT scans with considering
the 1,186 nodules annotated by the majority of the radiologists
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as positive examples. All nodules in LUNA16 are categorized as
nodules > 3 mm. The DSB 2017 [7] contains 2,101 CT scans,
while it only includes binary labels indicating whether a scan is
diagnosed with lung cancer or not. However, since different types
of nodules have different morphology and cancer probabilities,
these datasets with few annotations and limited types of nodules
are insufficient for practical application in lung cancer diagnosis.

3 PROPOSED METHOD

Different from the 2D object detection in general natural images,
pulmonary nodule detection is a 3D object detection problem
using 3D CT data. In order to make full use of the 3D space
information between different slices, we propose a slice-aware
network (SANet), as shown in Fig. 2. In SANet, a slice grouped
non-local (SGNL) module is proposed to capture long-range
dependencies among any positions and any channels of one
slice group in the feature map. And we further develop a false
positive reduction module to improve the performance of nodule
detection, especially nodules of small size.

3.1

Encoder-Decoder Architecture. In our SANet, 3D ResNet50
is adopted as an encoder due to its outstanding performance
in feature extraction [56]. However, the size of nodules varies
greatly and is much smaller compared with common objects
in natural images. 3D Resnet50, which encodes the CT images
with five 3D convolutional blocks, can not explicitly describe
the features of nodules and lead to poor performance in de-
tecting nodule candidates. To address this problem and enable
the network to capture multi-scale information, we employ a
U-shaped encoder-decoder architecture [40]. The decoder net-
work consists of two 2 X 2 x 2 deconvolution layers for up-
sampling the feature map to an appropriate size. Each output
feature map of deconvolutional layers is concatenated with the
corresponding output in the encoder network, whose channel
is adjusted by a 1 X 1 X 1 convolutional layer. The fea-
ture maps produced by our encoder-decoder network are de-
fined as {Mresh MT€527 Mres37 Mres47 Mres57 Mdela MdeZ}’
respectively.

3D Region Proposal Network. To generate pulmonary nod-
ule candidates, a 3 X 3 X 3 convolutional layer is employed over
the concatenated feature map Mgeo. The 3 X 3 X 3 convolution
is followed by two parallel 1 x 1 x 1 convolutional layers for
regressing the 3D bounding box of each voxel (i.e., Reg Layer in
Fig. 2) and predicting classification probability (i.e., Cls Layer in
Fig. 2). Based on the distribution of nodule size, we design five
anchors with sizes 5, 10, 20, 30, and 50. Each anchor is specified
six regression parameters: central z-, y-, x- coordinates, depth,
height, and width. The multi-task loss function is defined as:

Network Structure

Lrpn = L({pi}. {t:i}) = ﬁ ZLclS (i, p7)

(1
+A

1 * *
Nreg ;Pl Lreg (th ti ) }

where i is the index of ¢ — th anchor in one 3D patch. N5 and
Neq are the numbers of anchors considered for computing clas-
sification loss and regression loss, respectively. A is a parameter
used to balance the two losses. p; is the predicted probability of
1 — th anchor being a nodule, p; is 1 if the anchor is positive and
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Fig. 2: Overall architecture of the proposed slice-aware network (SANet). The red dashed box represents the nodule candidate. And

the CT images below are zoomed-in images of the ones above.

0 otherwise. In our work, an anchor that has Intersection-over-
Union (IoU) overlap equal to or higher than 0.5 with any ground-
truth nodule box is considered as positive (p; = 1). If there are
no anchors that meet the above condition, the anchor with the
highest IoU overlap is assigned a positive label. On the other
hand, an anchor having IoU less than 0.02 with all ground-truth
boxes is considered as negative (p; = 0). ¢; is a vector denoting
the predicted 6 parameterized coordinates for nodule position,
and t; is the ground-truth vector. For notational convenience,
subscript ¢ is ignored and ¢; and ¢ are defined as:

t_(z—za Y=Ys T % lo ilo i10 ﬂ)
= a0 h 0w, gda’ gha7 gwa ’(2)

N 2 =24 Y —Ya T — T4 d* h* w*
t :( o h o w. ,loga,logh—a,logw—a>,
3
where z,y, z,w, h, and d represent the predicted box’s center
coordinates, width, height, and depth. x*, y*, z*, w*, h*, and d*
are the parameters for the ground-truth box. Z, Ya, Za, Wa, Pa»
and d, denote the parameters of the anchor box. What’s more,
we use weighted binary cross-entropy loss for L.;s and smooth

Ly loss [34] for Lyeg.

3.2 Slice Grouped Non-local Module

In the thoracic CT images, vessels and bronchus are the con-
tinuous pipe-like structure, while nodules are usually isolated and
spherical. To diagnose nodules from other tissues, doctors need to
view multiple consecutive slices to capture the correlation among
them. According to the diagnosis way of doctors, we propose a
slice grouped non-local module (SGNL, as shown in Fig. 3) based

on the non-local module in [57]. The SGNL can learn explicit
correlations among any elements across slices.

Review of Non-local Operation. Let X € RP*HxWxC
denote the input feature map for the non-local module, Where
D, H, W, and C represent depth, height, width, and the number
of channels. The original non-local operation in [57] is defined
as:

Y = f(0(X),¢(X))g(X), S

where Y € RDXHXWXC g () , ¢ () .9 () c RPHWXC g1
implemented by 1 X 1 X 1 convolution and can be written as:

0 (X) =XWy, ¢ (X) = XW¢’ g (X) = Xwg) (@)

where Wy, Wy, and W are weight matrices to be learned.
The function f (-, ) is used to compute the similarity between all
locations in the feature map. In [57], they describe several choices
for f, where the dot-produce is probably the simplest one, i.e.,

F0(X), (X)) = 0(X)(X) (6)

Slice Grouped Non-local. The origin non-local module can
capture long-range dependencies among any positions in the
feature map. However, the affinity between any channels is also
important for discriminating the fine-grained objects as explored
in [58], [59]. We consider cross-channel information in the origin
non-local operation to model long-range dependencies among any
positions and any channels.

We reshape the output of Eq. 5 by merging channel into
position and obtain 6 (-), 4 (-),g(-) € RPEWC Our SGNL
operation computes the response Y as:

Y = f(vec (0 (X)), vec(¢ (X)) vee(g (X)), (D)
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Fig. 3: The slice grouped non-local module (SGNL). After three
1 x 1 x 1 convolutional layers, the feature maps are divided into
multiple groups along the depth dimension. The depth dimension
is grouped into D’ = D /G, where G is the group number.
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where vec denotes that it is a vector after reshape operation.

Since there is a DHWC x DHWC' pairwise matrix, the
computational complexity is much higher than the original non-
local module, so directly implementing the SGNL is not feasible.
Recently, some studies explore the idea of group convolution,
such as Xception [60], MobileNet [61], ResNeXt [62], and Group
normalization [63], dividing channels into groups has been proven
to be effective in improving the performance of CNN. We intro-
duce the group idea in SGNL and consider the characteristics of
nodule detection in CT images, group the depth dimension D into
G groups, as shown in Fig. 3, each of which contains D’ = D/G
depths of the feature map. Each group is executed independently
by Eq. 7 to compute Y’, and the results are concatenated along
the depth dimension to obtain Y. In CT images, one nodule
usually exists in several consecutive slices, and utilizing all depths
to detect the nodule is unnecessary. The slice grouping operation
can capture the similarity between any positions and any channels
in one group, which augments the discrimination of nodules with
different sizes correspond to information in one slice group.

Fig. 3 illustrates the workflow of SGNL module for each
group. The SGNL operation in Eq. 7 is wrapped into the SGNL
block, which is defined as:

Z = concatenate (BN (Y'W,)) + X, ®)

where W, represents a 1 X 1 x 1 convolutional layer and BN
is a Batch Normalization [64]. “concatenate” denotes that all
groups are concatenated along the depth dimension. The residual
connection “+X” makes the SGNL compatible with the existing
neural network blocks. For the configuration of SGNL block, we
add 5 blocks (2 blocks on the res3 and 3 blocks on the res4, to
every other residual block) into 3D ResNet50 following [57].

5

TABLE 1: Comparison with the existing datasets of the pul-
monary nodule. ‘Scans’ indicates the number of CT scans.
‘Nodules’ denotes the number of labeled nodules. ‘Class’ means
the class number. And ‘Avail’ denotes whether the dataset is
available.

Dataset Year Scans Nodules Class Avail
ANODEQ9 [6] 2010 55 710 4 Yes
LIDC-IDRI [29] 2011 1,018 2,562 3 Yes
LUNA16 [30] 2016 888 1,186 2 Yes
DSB 2017 [7] 2017 2,101 N/A 2 No
PN9 2020 8,798 40,439 9 Yes

3.3 False Positive Reduction

The candidate detection stage is introduced to detect nodule
candidates with high sensitivity, which usually carries many false
positives. Some thoracic tissues, such as nodular-like structures,
mediastinal structures, large vessels, and scarring, are often found
as false positives. We further propose a false positive reduction
module (FPR) to reduce the number of false positives among the
nodule candidates and generate the final results.

As shown in Fig. 2, we take advantage of the multi-scale
feature maps to reduce false positives considering that the fea-
tures produced by the shallow block in ResNet contain rich
spatial details with high resolution. By cropping the feature maps
Mies1, Myesa, Mgeo using nodule candidates, we obtain three
regions of interest (Rol) of different scales: R, es1, Rres2, Rde2-
Rgeo is up-sampled and concatenated with R,.s2, then it is
concatenated with R,.s; after up-sampled. The final Rol is
converted by 3D max pooling, followed by two Fully connected
(FC) layers to obtain classification probability and bounding-box
regression offsets. The loss function is the same as the above 3D
RPN, which will reduce false positives and further optimize the
regression parameters of the box.

4 PROPOSED DATASET

We collect and annotate a new large-scale pulmonary nodule
dataset named PN9, which contains 8,798 thoracic CT scans and
a total of 40,439 annotated nodules. In this section, we present
the process of data acquisition and the detailed properties of the
proposed dataset.

4.1 Data Collection and Annotation
4.1.1 Data Collection

The CT images of PNO are mainly collected from two major
hospitals and different scenes such as the clinic, hospitalization,
and physical examination, etc. The year of each CT image being
taken varies from 2015 to 2019. For the initial CT images
obtained with CT plain scan, quality assurance is performed by
confirming of selecting Digital Imaging and Communications
in Medicine (DICOM) fields. Besides, the images with object
interference and severe respiratory motion artifacts are excluded
to ensure quality. When collecting data in the hospitals, all the
protected health information of the patients contained in the
DICOM headers of the images is removed through the data
masking process, including the patient’s name, institution name,
referring physician’s name, and so on.
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4.1.2 Data Annotation

In order to annotate the pulmonary nodules as accurately as
possible, we adopt a two-phase process for the interpretation of
CT scans. Meanwhile, the doctors who annotating the DICOM
images are attending physicians from the major hospitals. At
the first annotation phase, the DICOM images of one CT scan
are interpreted by an attending physician from the hospital and
checked by another doctor. Then, the medical report of the patient
is generated. The medical report contains information on the type,
size, and the approximate location of each pulmonary nodule.
Then we obtain medical reports of all CT scans acquired at
both hospitals. The second phase is for detailed annotations.
Each case is annotated slice by a slice of the pulmonary nodules
by an attending physician, who refers to the hospital’s medical
report at the same time. For each pulmonary nodule at one
slice identified by the doctor, the bounding box and category
information are stored in a single XML file. By referring to
the medical guidelines [65], [66], [67], and satisfying the needs
of hospitals, we divide the pulmonary nodule into 9 different
categories according to the nodule type and size. Doctors classify
pulmonary nodules in terms of the category criteria. Then another
doctor reviews and modifies the annotations to form the final
annotation. If there is any inconsistency between the two doctors
at the second annotation phase, they will discuss to determine the
final annotation.

By implementing the above two-phase annotation procedures,
we finally obtain 8,798 CT scans with 40,439 annotated nodules.
All images are collected from hospitals, and the data distribution
is consistent with the clinical circumstance.

4.2 Dataset Properties

CT Manufacturer. The CT scans in PN9 are obtained by a
series of CT manufacturers and corresponding models, as shown
in Fig. 4 (c). PN9 includes 2,652 scans from ten different GE
Medical Systems scanner models, 2,305 scans from eleven dif-
ferent Siemens scanner models, 2,224 scans from three different
Toshiba scanner models, 800 scans from two different United
Imaging Healthcare (UIH) scanner models, and 817 scans from
six different Philips scanner models.

Slice Thickness. Since the images of thick slice are not
optimal for CAD analysis [68], [69], we mainly collect the CT
scans with thin-slice. As illustrated in Fig. 4 (a), slice thickness
ranges from 0.4 mm to 2.5 mm, and most are located at 0.7, 0.8,
1.0, and 1.25 mm. Besides, the pixel spacing ranges from 0.310
mm to 1.091 mm, with a mean of 0.706 mm.

Nodule count. In Fig. 4 (b), we illustrate the distribution of
nodule count in one patient. We observe that approximately 68 %
of patients have nodules less than 5 in our PN9. However, there
are about 9 % of patients with more than 10 nodules, which may
be difficult to detect.
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Class. Our PNO has a hierarchical class structure, and its de-
tailed taxonomy is shown in Fig. 5. According to the property of
the pulmonary nodules, all nodules in our dataset are first divided
into four upper-level classes (denoted as super-class), including
solid nodule (SN), part-solid nodule (PSN), ground-glass nodule
(GGN), and calcific nodule (CN). Meanwhile, To satisfy the
practical demands of doctors and hospitals, we further subdivide
the super-class referring to the medical guidelines [65], [66], [67].
Each nodule is assigned with a subordinate class (denoted as
sub-class) belonging to a certain super-class based on the nodule
size. For example, sub-class 0-3mm solid nodules (denoted as 0-
3SN) are defined as any nodules identified to be super-class solid
nodules with the most significant in-plane dimension in the range
of 0-3 mm. And 9 different sub-classes are finally obtained. The
statistics of nodules in each class are shown in Fig. 5 (a). In Fig. 5
(b-c), we show the mutual dependencies among super-classes and
sub-classes, respectively. The larger width of a link between two
classes indicates a higher probability for the two classes’ nodules
appearing in one patient simultaneously. For example, a patient
diagnosed with ground-glass nodules is also likely to have solid
nodules.

There are 9 different categories in PN9 covering the most
common pulmonary nodule types. However, since some types of
nodules rarely appear in real life, the data distribution in our PN9
is imbalanced. As illustrated in Fig. 5, the number of small size
nodules is bigger, and nodules like PSN are relatively fewer. The
imbalanced distribution can result in the model learning a biased
result to those nodules with relatively more samples. Besides, a
large number of small size nodules also bring challenges to the
accurate detection of nodules.

4.3 Comparison with Other Datasets

In Table 1, we compare the PN9 with several existing pulmonary
nodule datasets. Compared to the widely used dataset LUNA16
[30], PN9 contains over 10 times more CT scans and over 30
times more annotated nodules. As for the class diversity, other
datasets only have three categories: nodule > 3 mm, nodule <
3 mm, and non-nodule [29], [30]. Due to these limitations, it
is difficult for most of the existing nodule datasets to apply to
the practice. However, our PN9 contains many CT scans and 9
classes, which will contribute to the detection and classification
tasks of the pulmonary nodules, allowing researchers to design
more effective algorithms based on different types of nodules.
Besides, there are more pulmonary nodules of small size, like O-
3mm solid nodules and 0-5mm ground-glass nodules. It helps
identify small nodules more accurately, then the doctors can
diagnose and treat patients earlier. In summary, our dataset not
only is larger than the previous datasets, but also has superior
diversity and performance.

5 EXPERIMENTS
5.1 Evaluation Metrics

The Free-Response Receiver Operating Characteristic (FROC) is
the official evaluation metric of the LUNA16 dataset [30], which
is defined as the average recall rate at 0.125, 0.25, 0.5, 1, 2,
4, and 8 false positives per scan. And a nodule candidate is
considered as a true positive when it is located within a distance
R from the center of any nodules in the reference standard,
where R denotes the radius of the reference nodule. Nodule
candidates not located in the range of any reference nodules are
considered as false positives. We use this evaluation metric in
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the experiments and further generalize it as FROCj,;;, which
defines the true positives if the 3D Intersection over Union (IoU)
of nodule candidates and any reference nodules is higher than one
threshold (3D IoU threshold is defined as 0.25 in experiments).

Besides, we also adopt the 3D mean Average Precision (mAP)
as the detection evaluation metric. According to the character-
istics of 3D object detection and the dataset PN9, we define
the following five metrics: AP@0.25 (AP at 3D IoU = 0.25),
AP@0.35 (AP at 3D IoU = 0.35), AP, (AP for small nodules
that correspond size 0-5 mm: volume < 512), AP,, (AP for
medium nodules that correspond size 5-10 mm: 512 < volume
< 4096), and AP; (AP for large nodules that correspond size >
10 mm: volume > 4096). Since pulmonary nodule detection is a
3D object detection task, for several 2D detection methods in the
comparison experiments, the 2D proposals need to be merged to
generate 3D proposals using a method similar to [70].

5.2 Experimental Settings

Data Preprocessing. For the dataset PN9, we split the 8,798 CT
scans into 6,707 scans for training and 2,091 scans for testing.
During training, we separate 670 CT scans from the training set
as the validation set to monitor the convergence of the model.
There are three preprocessing steps for the raw CT images. First,
all raw data are converted into the Hounsfield Unit (HU) since HU
is a standard quantitative value describing radiodensity. Then, the
data is clipped into [—1200, 600]. Finally, we transform the data
range linearly into [0, 255].

Patch-Based Input. For 3D CNN, due to the GPU memory
constraint, using the entire CT images as input during training is
infeasible. We extract small 3D patches from the CT images and
individually input them into the network. The size of the input
3D patch is 128 x 128 x 128 x 1 (Depth x Height x Width X
Channel). If a patch exceeds the range of CT images, it is padded
with a value of 170, which is the luminance of common tissues
and can be distinguished from pulmonary nodules. During the
test phase, we take the entire images of one CT scan as input,
and do not crop the 3D patches. In order to avoid an odd size of
the entire 3D images, they are padded with a value of 170 before
being input into the model.

Implementation Details. In our SANet, we use the Stochastic
Gradient Descent (SGD) optimizer with a batch size of 16. The
initialization learning rate is set to 0.01, the momentum and
weight decay coefficients are set to 0.9 and 1 x 10~4, respectively.
The SANet is trained with 200 epochs, and the learning rate
decreases to 0.001 after 100 epochs and 0.0001 after another 60
epochs. Besides, our method is implemented using PyTorch. The
experiments are performed on 4 NVIDIA RTX TITAN GPUs
with 24GB memory.

5.3 Comparison with Other Detection Methods

In this section, we compare the detection performance of our
SANet with several state-of-the-art detection methods on the PN9,
including 2D CNN-based methods Faster R-CNN [34], RetinaNet

[38], SSD512 [12] and 3D CNN-based methods leaky noisy-
OR [7], 3D Faster R-CNN [23], DeepLung [23], NoduleNet
(Ng) [71], I3DR-Net [43], DeepSEED [39].

Comparison based on FROC. We first evaluate the FROC
score defined in the LUNA16 dataset [30]. The experiment results
are listed in Table 2, and the FROC curves are illustrated in
Fig. 6. It is noted that our SANet achieves the best results over
other methods, which obtains an improvement of 3.04 % on
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TABLE 2: Comparison of our SANet and other methods in terms of FROC on dataset PN9. The values are pulmonary nodule detection
sensitivities (unit: %) with each column representing the average number of false positives per CT scan.

Method 0.125 0.25 0.5 1.0 2.0 4.0 8.0 Average
2D CNN-Based Methods:
Faster R-CNN [34] 10.79 15.78 23.22 32.88 46.57 61.94 75.52 38.10
RetinaNet [38] 8.42 13.01 20.13 29.06 40.41 52.52 65.42 32.71
SSD512 [12] 12.26 18.78 28.00 40.32 56.89 73.18 86.48 45.13
3D CNN-Based Methods:
Leaky Noisy-OR [7] 28.08 36.42 46.99 56.72 66.08 73.77 81.71 55.68
3D Faster R-CNN [23] 27.57 36.59 46.76 58.00 70.00 80.02 88.32 58.18
DeepLung [23] 28.59 39.08 50.17 62.28 72.60 82.00 88.64 60.48
NoduleNet (N2) [71] 27.33 38.25 49.40 61.09 73.11 83.28 89.83 60.33
I3DR-Net [43] 23.99 34.37 46.80 60.04 72.88 83.60 89.57 58.75
DeepSEED [39] 29.21 40.64 51.15 62.20 73.82 83.24 89.70 61.42
SANet 38.08 45.05 54.46 64.50 75.33 83.86 89.96 64.46
TABLE 3: Comparison of our SANet and other methods in terms of FROC,y (%) on dataset PNO.
Method 0.125 0.25 0.5 1.0 2.0 4.0 8.0 Average
2D CNN-Based Methods:
Faster R-CNN [34] 341 6.97 12.26 20.58 33.05 46.41 57.90 25.80
RetinaNet [38] 2.60 5.56 10.95 19.25 29.29 40.49 51.05 22.74
SSD512 [12] 4.62 8.48 14.76 25.06 40.32 57.27 70.80 31.61
3D CNN-Based Methods:
NoduleNet (N2) [71] 21.17 30.23 40.38 51.02 61.26 70.70 76.93 50.24
I3DR-Net [43] 15.64 23.13 37.00 51.54 64.54 72.91 77.53 48.90
SANet 26.72 36.03 47.46 56.99 66.35 73.52 78.32 55.06
TABLE 4: Comparison of our SANet and other methods in terms of FROC (%) on the dataset LUNA16 [30] .
Method 0.125 0.25 0.5 1.0 2.0 4.0 8.0 Average
Leaky Noisy-OR [7] 59.38 72.66 78.13 84.38 87.50 89.06 89.84 80.13
3D Faster R-CNN [23] 66.20 74.60 81.50 86.40 90.20 91.80 93.20 83.40
DeepLung [23] 69.20 76.90 82.40 86.50 89.30 91.70 93.30 84.20
NoduleNet (N2) [71] 65.18 76.79 83.93 87.50 91.07 92.86 93.75 84.43
I3DR-Net [43] 63.56 71.31 79.84 85.27 87.60 89.92 91.47 81.28
DeepSEED [39] 73.90 80.30 85.80 88.80 90.70 91.60 92.00 86.20
SANet 71.17 80.18 86.49 90.09 93.69 94.59 95.50 87.39
TABLE 5: Comparison of SANet and NoduleNet based on AP. Lo

' = Faster R-CNN DeepLung
Method AP@025 AP@035 | AP, AP,, AP, 09— Refftie Noddgfer
NoduleNet (N) [71] 46.7 302 28 453 464 0.84 — Teaky Noisy-OR g
SANet 522 36.6 141 476 486 D i RONN i P’

TABLE 6: Ablation study for the proposed SGNL and FPR (%).
The baseline is the detection model based on 3D ResNet50 and
3D RPN (No. 1). We add the SGNL module and FPR module
to show their effectiveness(No. 2 and No. 3). The No. 4 is the
complete version of our proposed SANet. The p-value denotes a
statistical significance test for FROC (vs. proposed SANet).

No. SGNL FPR | FROC FROCr,;y AP@0.25  p-value
1 61.29 51.96 49.0 0.009
2 v 64.34 53.44 51.3 0.081
3 v 62.69 52.51 50.2 0.015
4 v v 64.46 55.06 52.2 -

average FROC score over the second-best DeepSEED [39]. And
our method especially outperforms the other detection methods
by a large margin for the average number of false positives per
CT scan smaller than 2. Besides, other 3D CNN-based methods,
like NoduleNet (N3) [71] and DeepLung [23], obtain comparable
results. It can be seen that the FROC scores of 3D CNN-based
methods are significantly better than 2D CNN-based methods.

e e
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N W
-
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Average number of false positives per scan
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0.125

Fig. 6: FROC curves of compared methods and our SANet.

For example, our proposed SANet improve the SSD512 [12]
and Faster R-CNN [34] in terms of average FROC score by
19.33 %, and 26.36 %, respectively. Since the 2D CNN-based
methods only utilize the input images of three channels and learn
insufficient spatial information, they obtain weak performance for
3D pulmonary nodule detection.
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TABLE 8: Ablation study for the proposed SGNL module with

1.0 Foster R-CNN NodulaNet different configurations of the SGNL block (%). The p-value
0.91 ASIEr B e denotes a statistical significance test for FROC (vs. SANet with
— RetinaNet —— I3DR-Net 5-block)
087 — ssps12 SANet :
071 No. SGNL Block | FROC FROC;,y  AP@0.25 p-value
> ’ 1 4-block 62.97 53.45 50.8 0.023
= 0.6 2 5-block 64.46 55.06 52.2 -
E 0.5 3 10-block 64.20 53.92 51.1 0.079
Zo.
=] . .
3 041 TABLE 9: Ablation study for the proposed SGNL module with
0.3 different numbers of groups G' (%).
021 Groups G | FROC FROC;,;y AP@0.25 APs AP,, AP,

’ 1 62.88 53.73 50.6 10.5 482 485
0.14 4 64.46 55.06 52.2 14.1 47.6  48.6
0.0 8 63.80 54.62 51.2 15.6 46.6 478

0.125 025 0.5 1 2 4 8

Average number of false positives per scan
Fig. 7: FROCj,y curves of compared methods and our SANet.

TABLE 7: Comparison of other methods equipped with the
proposed SGNL and FPR modules (%).

Model SGNL FPR | FROC FROCr.u
DeepLung [23] 60.48 -
DeepLung [23] v 61.67 -
DeepLung [23] v 61.15 -
DeepLung [23] v 4 62.06 -

NoduleNet (Na) [71] 60.33 50.24
NoduleNet (N2) [71] v 62.35 51.13
NoduleNet (N2) [71] v 61.18 50.99
NoduleNet (N2) [71] v v 62.69 52.37

Comparison based on FROC;,;. In the origin FROC,
a nodule candidate is defined as true positive if it is located
in a distance from the center of any reference nodules. We
further generalize the FROC as FROC s, which defines the true
positives based on 3D IoU of nodule candidates and reference
nodules. The experiment results are shown in Table 3 and Fig. 7.
We do not list the results of leaky noisy-OR [7], 3D Faster R-
CNN [23], DeepLung [23], DeepSEED [39] because that the
central coordinates and diameters they predict are not matching
with the 3D cube of ground truth nodules. Our SANet achieves an
FROC;,y score of 55.06 %, which is better than other methods
and outperforms the NoduleNet (N2) [71] by 4.82 %. And the
FROC;,y scores of 3D CNN-based methods are also better than
2D CNN-based methods.

Comparison based on AP. Since larger nodules usually have
a higher suspicion of malignancy, the size of nodules is important
for diagnosing lung cancer. We also adopt the 3D AP and define
several evaluation metrics based on our dataset PN9. Table 5 lists
the results of NoduleNet (N2) [71] and our proposed method
SANet. Our SANet improves the NoduleNet in terms of AP@0.25
by 5.5. Considering the size of nodules, we define three metrics
AP, AP,,, and AP; to evaluate the detection performance of
small, medium, and large nodules, respectively. It can be seen
that our SANet obtains better results on all three metrics, which
prove its effectiveness.

Visualization. The visualization of central slices for nodule
ground truths and different methods’ detection results is shown in
Fig. 8. For the nodules of five types, the detected nodule positions
of our SANet are consistent with those of ground truth. However,
the detection results obtained by other methods are usually offset
or larger than the ground truth, especially the 2D CNN-based

method. These experiment results verify the superiority of our
SANet in the task of nodule detection.

Comparison on the LUNA16 dataset. To further validate
the performance of the proposed SANet, we conduct experiments
on the widely used dataset LUNA16 [30] with 10-fold cross-
validation. As shown in Table 4, our SANet achieves the best
results for pulmonary nodule detection. For example, it obtains
an average FROC score of 87.39 %, which improves the second-
best method DeepSEED [39] by 1.19 %. Besides, our SANet
outperforms the state-of-the-art nodule detection methods by a
large margin for the settings of average number of false positives
per CT scan larger than 1.

5.4 Ablation Studies

Effectiveness of Our Proposed Modules. In the SANet model,
there are two essential modules: SGNL and FPR. To verify
the performance of two modules, we conduct experiments with
different settings, as shown in Table 6. The No.l is the base-
line performance without SGNL and FPR. After applying our
proposed SGNL and FPR to the baseline, the results obtain
improvements in terms of the FROC score by 3.05 % and
1.40 %. These results validate that both modules are helpful
for pulmonary nodule detection. Besides, we achieve a 3.17 %
improvement in terms of the FROC score if combining SGNL
and FPR. The FROC;,y score and AP@0.25 have also been
improved by applying the two modules. We also validate the
effect of DeepLung [23] and NoduleNet (N2) [71] equipped with
our proposed two modules. As listed in Table 7, the FROC scores
of NoduleNet (N2) [71] are improved by 2.02 % and 0.85 % with
applying our proposed SGNL and FPR modules, respectively.
The performance of DeepLung [23] is also improved by adding
the two modules. These results verify that our proposed SGNL
and FPR modules are beneficial for nodule detection.

Effect of Different Configurations in SGNL. Table 8 shows
the results of the proposed SGNL module with different configu-
rations of the SGNL block. We add 4 blocks (to right before the
last residual block of stages res2 to resS), 5 blocks (2 to res3 and
3 to res4, to every other residual block), and 10 blocks (to every
residual block in res3 and res4) into 3D ResNet50. Compared
with the No.3 in Table 6, adding different configurations of the
SGNL block brings improvements in terms of the three evaluation
metrics. The results of 5 SGNL blocks are best, which provides
1.77 % improvement on FROC and 2.55 % improvement on
FROCj,y -

We also analyze the influence of the different numbers of
groups G in the SGNL module, as listed in Table 9. We achieve



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

SN

3-10

>5PSN  >5GGN 10-30 SN

CN

@ ® @ © @ e o  ®» @ ®»w  » G ®

Fig. 8: Qualitative comparison of central slices for our SANet and other methods. The first row to the fifth row show the comparison
results with different nodule classes: 3-10 SN, 10-30 SN, >5 GGN, > 5 PSN, and CN, respectively. (a) Ground truth. (b)-(i) Detection
results of Faster R-CNN [34], RetinaNet [38], SSD512 [12], Leaky Noisy-OR [7], 3D Faster R-CNN [23], DeepLung [23], NoduleNet

(N2) [71], I3DR-Net [43], DeepSEED [39], and our SANet.
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Fig. 9: The precision-recall curve for the nodule detection on the
small-scale pulmonary nodule testing dataset. The ‘Doctorl’ and
‘Doctor2’ denote the detection results of two experienced doctors.

TABLE 10: Analysis of how different CT manufacturers affect
the performance. ‘GE’ denotes GE Medical Systems.

CT Manufacturer GE Philips ~ Siemens  Toshiba  UIH
Number in Test Set 657 174 523 557 180
FROC 66.63  65.07 65.73 60.65 65.50

an FROC score of 64.46 % when G = 4, which improves
two other settings G = 1 and G = 8 by 1.58 % and 0.66
%, respectively. Besides, the APy score is best when G = 8
and the AP, score is best when G = 1. These experimental
results are in line with our expectations. The slice grouping
operation is proposed to capture the relationship between any
positions and any channels in one group, which augments the
discrimination of 3D pulmonary nodules in different sizes. If there

Ground Truth Groun;i Truth SANet

SANet

Fig. 10: Visualization of some cases that our SANet fails. The first
two columns are nodules of 0-3 SN, and the last two columns are
nodules of 0-5 PSN.

are fewer groups, each group contains more consecutive slices, it
is beneficial to detect large nodules but limits the detection of
small nodules. Each group contains few slices when too many
groups are split, restricting the detection of nodules with large
size. Since the overall performance is best and AP of nodules
with different sizes is comparable, we set the number of groups

G=4.

5.5 Comparison with Experienced Doctors

Furthermore, We compare the detection performance of our
SANet and two experienced doctors with at least 10 years’ clin-
ical experience. We collect an additional small-scale pulmonary
nodule testing dataset that contains 120 CT scans. After annotated
accurately by several attending physicians from major hospitals,
this testing dataset contains 2,137 annotated nodules with the
golden standard. The other two experienced doctors, who never
diagnose the small-scale testing dataset, are invited to individually
identify lung nodules. Each doctor label one 3D bounding box
and category for each nodule. If the 3D IoU of one nodule can-
didate and the golden standard is higher than one threshold, this
candidate will be considered as true positive. Then the detection
results of two experienced doctors can be obtained: precision
35.92% and recall 70.20% for doctorl, precision 33.78% and
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recall 73.80% for doctor2. And the detection performance of the
two doctors is not high, which is one of the major challenges in
nodule diagnosis and treatment. As for our SANet, it is trained on
dataset PN9 and tested on this small-scale testing dataset, which
is evaluated using AP@0.25.

The PR curve of our SANet and the detection results of
two experienced doctors are shown in Fig. 9. It is noted that
the performance of our model is better than two doctors on
their individually diagnosed nodules, which validates that SANet
surpasses the human-level performance and is suited for pul-
monary nodule detection. Some pulmonary nodules are small,
while different nodules have different morphology. Thus, doctors
usually recognize the obvious nodules in CT images and fail to
identify each nodule, especially a large number of small nodules.
For a nodule containing multiple consecutive slices, they often
miss some slices and affect the performance of nodule detection.
Our SANet takes much less time to identify nodules than doctors.
Therefore, doctors will diagnose pulmonary nodules with higher
efficiency and accuracy by taking advantage of our SANet, which
will further help the early diagnosis and treatment of lung cancer.
Meanwhile, we hope future researches on our PN9 will further
promote the detection results for pulmonary nodules and help its
application in clinical circumstances.

5.6 Discussion

As shown in the above experiments, our proposed SANet ob-
tains the best performance on our PN9 and public dataset
LUNA16 [30] compared with other state-of-the-art detection
methods. Besides, the performance of SANet is better than two
experienced doctors. However, there are still some failure cases of
our method. As illustrated in Fig. 10, SANet may generate larger
bounding boxes than the ground truth when identifying nodules
with class 0-3 SN. Since the nodules of PSN usually have a fuzzy
border, SANet may not identify the entire nodules of PSN and
produce smaller bounding boxes than the ground truth. In the
future, we will consider the attributes of different categories to
detect pulmonary nodules better.

We also analyze the influence of different CT manufacturers.
As listed in Table 10, we report the FROC score of our SANet
for CT scans in the test set with different manufacturers. The
difference between the results is small except CT manufacturer
of Toshiba. The reason is that the CT scans in the test set obtained
by Toshiba happen to contain more small nodules than other
manufacturers, which affects its performance. In general, the
influence of different CT manufacturers is small since our PN9
contains sufficient CT scans from different manufacturers.

6 CONCLUSION

In this paper, we propose a new large-scale dataset named
PN9 for pulmonary nodule detection. Specifically, it contains
8,798 CT scans, 9 classes of common pulmonary nodules, and
40,439 annotated nodules. Compared with the currently existing
pulmonary nodule datasets, the PN9 has a much larger scale
and more categories, which is beneficial for the CNN-based
methods and practical application. What’s more, we develop a
slice-aware network (SANet) for nodule detection. The SGNL
module is introduced to learn explicit correlations among any
position and any channels of one slice group in the feature map.
And we propose a false positive reduction (FPR) module to
reduce the false positives generated in the detection stage of 3D
RPN. Extensive experiment results on dataset PN9 demonstrate
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the superior performance of the SANet. We hope our dataset PN9
and method SANet will promote future researches on pulmonary
nodule detection and further help the application of deep learning
in clinical circumstances.
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